MEASURING SHORT AND LONG-TERM EFFECTS OF ISOLATED AND COMBINED STRUCTURED INPUT AND STRUCTURED OUTPUT ON THE ACQUISITION OF THE ENGLISH CAUSATIVE FORM AT SENTENCE AND DISCOURSE-LEVEL

The thesis is submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of the University of Portsmouth.

MARIA BATZIOU

December 2017
ABSTRACT

The present study was carried out to investigate the relative effects of structured input and structured output in isolation and in combination on the acquisition of the English causative forms. The effects of these pedagogical interventions were investigated on a processing strategy used by L2 learners when processing syntactic structures. The so-called First Noun Principle. Additionally, there are a number of issues addressed by this study such as measuring discourse-level and long-term effects. To provide answers to the questions formulated in the present study, two classroom studies were carried out: in the first study two parallel classroom experiments were conducted; in the second study one classroom experiment was carried out with a focus on measuring specifically discourse and long-term effects for instruction.

The first study consisted of two parallel classroom experiments. In experiment one, the participants were fifty-four Chinese university students. They were randomly assigned to four groups: Structured input group (n=13); Structured Output group (n=15); Structured input and Structured Output group (n=16); Control group (n=10). In experiment two, the participants were thirty young Greek learners (aged 10-12). They were randomly assigned to three groups: Structured input group (n=10); Structured Output group (n=10); Structured input and Structured Output group (n=10).

The second study focused on discourse and long-term effects. The participants were sixty-eight young Greek learners (aged 10-12). They randomly assigned to three groups: structured input only group (n=22); structured output only group (n=22); combined structured input and structured output group (n=24).

In both classroom studies, only subjects who participated in all phases of all experiments and scored lower than 60% in the pretests were included in the final data collection. Instruction lasted for three hours. The control group (study one) received no instruction on the causative form. One interpretation and one production task were used in a pretest and posttest design. The design included a delayed posttest battery (three weeks after instruction, twenty-four weeks after instruction - study two only). In study one - experiment one, the assessment tasks included an interpretation and production task at sentence-level, and an interpretation task at discourse-level. In the
other two experiments, only discourse-level tasks were used (one interpretation and one production). The results indicated that learners who received structured input both in isolation and in combination benefitted more than learners receiving structured output only. These two groups retained the instructional gains in all assessment measures.

These specific findings from the present study indicated the following:

(a) Structured input practice plays a key role. Structured input alone and/or in combination is an effective pedagogical tool that helps learners of different age (adults and school-age learners) and first language (Greek and Chinese) to interpret and produce English causative forms accurately and appropriately;

(b) The effects of structured input practice are measurable in both sentence and discourse-level interpretation and production tasks;

(c) The effects structured input practice are retained by learners after three weeks and six months.
CONTENTS

ABSTRACT ........................................................................................................................ II

CONTENTS ....................................................................................................................... IV

DECLARATION .................................................................................................................. VIII

LIST OF TABLES ............................................................................................................. IX

LIST OF FIGURES ........................................................................................................... X

LIST OF ABBREVIATIONS .............................................................................................. XI

ACKNOWLEDGEMENTS ................................................................................................. XII

DISSEMINATION ............................................................................................................. XIII

INTRODUCTION

BACKGROUND TO THE RESEARCH ............................................................................. 1

AIMS OF THE PRESENT STUDY .................................................................................. 4

CORPU S OF THE THESIS ............................................................................................... 5

CHAPTER ONE: EMPIRICAL BACKGROUND AND MOTIVATION

1.1 INTRODUCTION ......................................................................................................... 7

1.2 INPUT PROCESSING .................................................................................................. 7

1.2.1 Word order ......................................................................................................... 12

1.2.2 LEXICAL SEMANTICS .................................................................................... 13

1.2.3 EVENT PROBABILITIES ........................................................................... 14

1.2.4 CONTEXTUAL CONSTRAINTS .................................................................... 15

1.3 OUTPUT PROCESSING ............................................................................................ 17

1.4 IMPLICATIONS FOR THE PRESENT STUDY ....................................................... 27

CHAPTER TWO: THE ROLE OF INSTRUCTION IN SLA

2.1 INTRODUCTION ....................................................................................................... 30

2.2 THE ROLE OF INSTRUCTION IN SLA ................................................................. 30

2.3 INPUT-BASED INSTRUCTION: PROCESSING INSTRUCTION ......................... 33

2.3.1 THE ROLE OF STRUCTURED INPUT PRACTICE .................................... 41

2.4 OUTPUT-BASED INSTRUCTION: STRUCTURED OUTPUT ......................... 48

2.5 IMPLICATIONS FOR THE PRESENT STUDY ....................................................... 52
**CHAPTER THREE: BACKGROUND AND MOTIVATION**

3.1 INTRODUCTION ................................................................. 55

3.2 EMPIRICAL REVIEW: THE ORIGINAL STUDY .................................................. 55

3.3 PROCESSING INSTRUCTION AND DISCOURSE-LEVEL EFFECTS .................................................. 58

  3.3.1 DISCOURSE-LEVEL PRODUCTION .................................................. 58

  3.3.2 DISCOURSE-LEVEL INTERPRETATION .................................................. 62

3.4 PROCESSING INSTRUCTION AND LONG-TERM EFFECTS .................................................. 64

3.5 IMPLICATIONS FOR THE PRESENT STUDY .................................................. 70

**CHAPTER FOUR: BACKGROUND AND MOTIVATION**

4.1 INTRODUCTION ................................................................. 71

4.2 PROCESSING INSTRUCTION VERSUS MEANING-BASED OUTPUT INSTRUCTION .................................................. 71

4.3 STUDIES COMPARING COMBINED INPUT AND OUTPUT PRACTICE .................................................. 83

4.4 SUMMARY OF RESEARCH MEASURING THE EFFECTS OF PROCESSING INSTRUCTION .................................................. 88

4.4 THE PRESENT STUDY: MOTIVATION AND RESEARCH QUESTIONS .................................................. 89

**CHAPTER FIVE: DESIGN AND METHODOLOGY**

5.1 OUTLINE OF THE DESIGN ................................................................. 92

5.2 PARTICIPANTS ................................................................. 92

  5.2.1 PARTICIPANTS: STUDY 1 ................................................................. 93

  5.2.1.1 PARTICIPANTS: EXPERIMENT 1 ................................................................. 94

  5.2.1.2 PARTICIPANTS: EXPERIMENT 2 ................................................................. 95

  5.2.2 PARTICIPANTS: STUDY 2 (EXPERIMENT 3) ................................................................. 97

  5.2.3 PARTICIPANTS INFORMATION ................................................................. 96

    5.2.3.1 CONSENT FORM AND INFORMATION SHEET ................................................................. 96

    5.2.3.2 QUESTIONNAIRE ................................................................. 97

5.3 TARGET FEATURE ................................................................. 97

5.4 METHODOLOGY ................................................................. 109

  5.4.1 PROCEDURES ................................................................. 109

  5.4.2 TEACHING MATERIALS ................................................................. 112
DECLARATION

Whilst registered as a candidate for the above degree, I have not been registered for any other research award. The results and conclusions embodied in this thesis are the work of the named candidate and have not been submitted for any other academic award.
LIST OF TABLES

Table 1.1. Development of word order in L2 German according to Meisel et al. (1981) .................................................................21

Table 1.2. Stages and procedures captured by PT .................................................23

Table 1.3. Stages of questions emergence in L2 English ......................................23

Table 5.1 Outline of the Design ...........................................................................93

Table 5.2 Summary of studies investigating the English causative forms ..............103

Table 5.3 Overview of the Procedures followed in Study 1 ................................111

Table 5.4 Overview of the Procedures followed in Study 2 ...............................112

Table 5.5 Split block design used in Study 1 .......................................................128

Table 5.6 Split block design used in Study 2 .......................................................129

Table 6.1 Experiment 1 – Interpretation sentence-level task (descriptive statistics) 132

Table 6.2 Experiment 1 – Production sentence-level task (descriptive statistics) ....134

Table 6.3 Experiment 1 – Production discourse-level task (descriptive statistics)... 136

Table 6.4 Experiment 2 – Interpretation discourse-level task (descriptive statistics) 138

Table 6.5 Experiment 2 – Production discourse-level task (descriptive statistics)... 140

Table 6.6 Study 2 – Interpretation discourse-level task (descriptive statistics) ......143

Table 6.7 Study 2 – Production discourse-level task (descriptive statistics) ..........145
LIST OF FIGURES

Figure 1.1 Overview of L2 acquisition processes based on VanPatten (2002b) ........................................ 18

Figure 2.1 Guidelines for Structured input activities (VanPatten and Sanz, 1995) ........................................... 38

Figure 2.2 Guidelines for Structured Output activities (VanPatten and Lee, 2005) ........................................... 51

Figure 5.1 Example of a written input referential activity utilized in the SI .................................................. 115

Figure 5.2 Example of an aural input referential activity utilized in the SI .................................................. 115

Figure 5.3 Example of a written input referential activity with visuals utilized in the SI .................................. 115

Figure 5.4 Example of an affective activity utilized in the SI practice ......................................................... 116

Figure 5.5 Example of a SO activity .............................................................................................................. 118

Figure 5.6 Example of sentence-level interpretation task ........................................................................... 121

Figure 5.7 Example of a sentence-level production task ............................................................................. 122

Figure 5.8 Example of a discourse-level interpretation task ....................................................................... 124

Figure 5.9 Example of a discourse-level production task ............................................................................ 125

Figure 6.1 Results of sentence-level interpretation tasks – Experiment 1 ................................................. 133

Figure 6.2 Results of sentence-level production tasks - Experiment 1 ....................................................... 135

Figure 6.3 Results of discourse-level interpretation tasks - Experiment 1 .................................................. 137

Figure 6.4 Results of discourse-level interpretation tasks - Experiment 2 ............................................... 139

Figure 6.5 Results of discourse-level production tasks - Experiment 2 ..................................................... 141

Figure 6.6 Results of discourse-level interpretation tasks – Study 2 ....................................................... 144

Figure 6.7 Results of discourse-level production tasks – Study 2 ............................................................ 147
LIST OF ABBREVIATIONS

ANOVA: Analysis of Variance
DG: Dictogloss
C: Control
COS: Canonical word Order Stage
C-R: Consciousness Raising
EI: Explicit Information
F: Form
FL: Foreign Language
FM: Form-meaning
FNP: First Noun Principle
GJ: Grammaticality Judgement
IE: Input Enhancement
IFS: Initialization/ Finalization Strategy
IP: Input Processing
L1/ L2: First Language/ Second Language
MOI: Meaning-based Output Instruction
NP/NP1/NP2: Noun Phrase/ First/ Second phrase in a sentence
O: Output
OVS: Object Verb Subject
PET: Preliminary English Test
PI: Processing Instruction
RQ: Research Question
SD: Standard Deviation
SI: Structured Input
SLA: Second Language Acquisition
SO: Structured Output
SVO: Subject Verb Object
TE: Task-Essential
TI: Traditional Instruction
TIE: Textual Input Enhancement
ACKNOWLEDGEMENTS

First and foremost, I would like to thank all my Greek students who participated in the experiments. I would like to express my gratitude to Dr. Claudia Wong for her valuable feedback on the materials and assessment tasks.

I would particularly like to thank Professor Alessandro Benati. There are a million reasons why I am thankful to him. The main one is that he had inspired me from the very start of my journey. He provided me with the invaluable opportunity to explore unknown paths of knowledge and he reminded me that there is always a lot more to be explored. Thank you for the continuous support along the way. Thanks for the valuable help and advice. The list is very long, and space is limited: Thank you.

I am also very grateful for the support of my family. My husband, Theodosios, who has been the best listener and the most patient supporter a person should ask for. Thank you for understanding and supporting me for these last twenty years! My precious daughter, Lina, for her support and encouragement. I won’t forget the times you would do your homework or write one of your ‘books’ or songs right next to me to show me how easy it is to start writing. I love you. Thanks to my brother, Yiorgos, for always being there to remind me of the essential things in life. Last but not least, I would like to thank my mother, Stavroula, for inspiring me to believe that hard work and strong determination can guide you out of any of the many life’s mazes. Thank you all for being in my life!
DISSEMINATION

PRESENTATIONS

- Making Research in Second Language Acquisition usable for Instruction and Instructors, New York College (November 2014, Athens, Greece)
- The international conference of the American Association for Applied Linguistics (AAAL) (April 2016, Orlando, Florida, USA)
- 37th annual meeting, Department of Linguistics Aristoteleion University of Thessaloniki (May 2016, Thessaloniki, Greece)
- Summer Seminars of EUROPALSO (July 2017, Athens, Greece)
- 32nd Annual Conference of EUROPALSO (August 2017, Athens, Greece)

PUBLICATIONS


xiii
INTRODUCTION

Background to the research

The key role of input in second language acquisition (SLA henceforth) is indisputable. Contemporary theories of SLA consider input as the critical ingredient for successful language acquisition. However, exposure to input does not automatically imply that learners integrate everything they hear or read into their developing system. Understanding an utterance can be very demanding for L2 learners. This is for two reasons: (a) they require to make form-meaning connections when exposed to sentence or discourse containing morphology for example; (b) they need to make a moment-by-moment computation of sentence structure in real-time comprehension. Learners are asked to process information while their processing resources are limited. In order to cope with the language input learners are exposed to, they tend to apply different processing strategies. These processing strategies have captured through input processing research and formulated in the so-called Input Processing Theory (VanPatten, 1996, 2002a, 2004). The Input Processing Theory is based on two overarching processing principles:

- L2 learners are driven to get meaning first while processing language input (Primacy of Meaning Principle)
- L2 learners assign the role of subject to the first noun they encounter in a sentence (First Noun Principle)

According to the Primacy of Meaning Principle, learners tend to rely on content words to initially process language input. By focusing on meaning, they do not process the form, and as a result of this they might skip grammatical features and fail to make form-meaning mappings.
In the case of sentence structure (First Noun Principle), learners tend to assign the role of agent to the first element they encounter in a sentence. In certain instances, this causes a misunderstanding of the meaning of the sentence and a subsequent delay in acquisition. One such a case is the English causative forms. When learners make the moment-by-moment computation of a causative structure in English, they tend to rely on the First Noun Principle. This causes a misunderstanding of the meaning of the input they are exposed to. For example, in the sentence *Lina had her dress mended*, early learners would wrongly assign the role of agent to the first noun encountered in this sentence, and thus they would process *Lina* as the person who actually mended the dress. Applying this processing strategy would cause misinterpretations of the meaning of the sentence, which in turn, cause a delay in the acquisition of the specific word order pattern and consequently of the target feature.

In order to circumvent these processing problems, VanPatten (1996) develop an instructional intervention called Processing Instruction. Processing Instruction is a pedagogical intervention predicated on VanPatten’s Input Processing Theory whose aim is to facilitate the cognitive processes by which learners connect a form in the input to its meaning or compute sentence structure correctly and appropriately. Processing Instruction research has shown that this type of instruction can be a viable solution in helping learners override their default processing strategies and process morpho-syntactical elements more accurately. Empirical research within this framework (Van Patten and Oikkenon, 1996; Benati, 2004a, 2004b; Wong, 2004; Sanz, 2004; Lee and Benati, 2007a) indicated that Structured input activities are the causative variable of the positive effects generated by Processing Instruction. It is the practice component of Processing Instruction that brings about its positive effects.
Empirical Research comparing the effects of Processing Instruction and Meaningful Output-based Instruction has provided some interesting and sometimes conflicting findings. On the one hand, there are studies (Farley, 2004; Morgan-Short and Bowden 2006) which indicated that Meaning Output-Based Instruction could have equal effects to Processing Instruction on both interpretation and production tasks. On the other hand, a group of classroom-based studies (Farley 2001; Benati 2005; Gely, 2005) showed that Processing Instruction had more significant effect than Meaning Output-Based Instruction on interpretation tasks, and equal impact to Meaning Output-Based Instruction on production tasks. Lee and Benati also (2007a) compared the two types of treatment (Processing Instruction vs Meaningful Output-Based Instruction) when delivered in different modes (classroom instruction vs computer terminals). The results of this study clearly indicated that when Meaning Output-Based Instruction is free from ‘incidental input’ (output of a learner functioning as input for the rest of the group), Processing Instruction is more effective than Meaning Output-based Instruction. Similarly, VanPatten et al. (2009) in response to a study by Keating and Farley’s (2008) study, provided clear evidence that Processing Instruction is more effective than Meaningful Output-Based Instruction in helping learners to alter their processing problems and subsequently have an impact on their developing system when they are asked to access the information for speech production.

Empirical evidence within the Processing Instruction framework (VanPatten and Olkennon, 1996; Benati, 2004a; Benati 2004b; Sanz, 2004; Wong, 2004; Lee and Benati, 2007b) has also indicated that the causative variable responsible for how L2 learners process input is the Structured input component.
Aims of the present study

Based on the findings of theoretical research on the effects of Processing Instruction and on the theoretical framework called Input Processing, the present study sought to broaden the debate around the role and effects of structured input and structured output practice. The present study examines the effects of three instructional treatments: structured input (SI) only; structured output (SO) only; and a combination of structured input and structured output (SI+SO) on the acquisition of English causative forms (the passive structure). Both interpretation and production tasks were used in this study at sentence and discourse-level. The present study also aims at examining whether the effects found for the instructional treatments can be retained three weeks and six months after instruction.

The specific aims of the present study are:

(a) To measure the effects of structured input and structured output practice in isolation and in combination on the acquisition of English causative forms. This is a syntactic structure affected by a well-documented processing principle called the First Noun Principle;

(b) To measure the effects of these pedagogical interventions on interpretation and production (sentence and discourse) tasks;

(c) To measure the effects of these pedagogical interventions on learners with different age (adults and school-age learners) and different first language (Greek and Chinese);

(d) To measure durative effects.
Corpus of the Thesis

The thesis follows a logical progression, and it is organised as follow:

Chapter one presents the theoretical background which underpins the current research project. The main principles and concepts of the Input Processing Theory (VanPatten, 1996, 2004, 2007) are presented. Constructs such as output processing and interlanguage systematicity are also discussed. The chapter concludes by highlighting the main implications for the present study.

Chapter two discusses the theoretical views and relevant research on the role of grammar instruction in SLA. The chapter focuses on input and output-based instructional treatments and provides an analysis of the two pedagogical interventions under investigation in the present study (structured input and structured output).

Chapter three reviews the empirical research that has measured the discourse-level and long-term effects of Processing Instruction and structured input on SLA.

Chapter four reviews empirical research measuring the effects of structured input versus Meaningful Output-based Instruction on SLA and research that has measured the effects of Processing Instruction when combined with different kinds of output practice. The aim is to establish the main motivation for this study and formulate the research questions.

Chapter five outlines the design and methodology used to address the research questions of this research project. It details the procedures, the teaching materials, the assessment tools, the scoring and data collection procedures followed in all experiments conducted in the present study.
Chapter six presents the descriptive statistics and the results from the statistical analyses of the data collected in the two studies. It concludes with a summary of the main findings.

Chapter seven discusses the main findings of this study in relation to previous research. The chapter examines the theoretical and pedagogical implications of the results and draws conclusions regarding the key issues raised in the present thesis. Finally, it presents the potential limitations of the studies conducted and suggests questions to be addressed by future research.

The Appendices provide the instructional material pack and assessments tasks used in the experiments. The language exposure questionnaire provided to the participants at the end of each experiment, the consent forms and information sheet used for the ethical approval, the ethics committee approval and UPR16 form are also included in the appendices.
CHAPTER ONE: THEORETICAL BACKGROUND

1.1 Introduction

The primary aim of this chapter is to examine the theoretical frameworks which underpins the present study. The two main processing principles of the Input Processing Theory (VanPatten, 1996, 2004, 2007) will be presented. The primary focus is on one of these principles, namely the First Noun Principle.

The role of Output Processing (VanPatten, 2003) is also discussed. This is because the present study is measuring the relative effects of two pedagogical interventions. One focusing on input and the other on output practice. One concerned with how L2 learners process input to build in an implicit linguistic system. The other on how learners might access that system to produce output. Both input and output processing are essential elements of our discussion.

1.2 Input Processing Theory

The current study and the experiments carried out in this project are framed in VanPatten’s theory (1996, 2004, 2007) of Input Processing. It is critical that an explication of this theory is provided. As a theoretical framework, Input Processing is concerned with the internal strategies and mechanisms L2 learners use in comprehending sentences and how these processing strategies might affect acquisition. This theoretical model addresses questions such as: What linguistic data do learners attend to during comprehension? And why? Are redundancy and location essential factors to establish whether L2 learners make form-meaning connections? What grammatical roles do learners assign to nouns based on their position in an utterance?
In its current form, VanPatten’s Input Processing Theory consists of two overarching organising principles. Each of these two principles is further explicated with sub-principles. The two overarching principles address two different aspects of processing. Firstly, The Primacy of Meaning Principle asserts that when learners are exposed to the input, they are primarily concerned with processing meaning. That is, “…learners are driven to look for the message or communicative intent in the input.” (VanPatten 2004:7). The second principle, The First Noun Principle, asserts that the order in which L2 learners come upon sentence elements is a powerful factor in assigning grammatical relations amongst elements in an utterance. According to this processing principle, L2 learners, in the attempt to make moment-by-moment computation of sentence structure during comprehension, would process the first element they encounter in the sentence as the subject of the sentence. Regarding this principle, VanPatten explains that “…the human mind may be predisposed to placing agents and subjects in a first noun position.” (VanPatten, 2004: 15).

The two main principles of the Input Processing Theory are:


   Principle 2. The First Noun Principle. Learners tend to process the first noun or pronoun they encounter in a sentence as the subject (VanPatten, 2007: 122).

   The Primacy of Meaning Principle is further subdivided into six sub-principles. As we read through these sub-principles, we find that they are meant to capture the interplay of various linguistic and cognitive processes that take place during comprehension. The sub-principles associated with the Primacy of Meaning Principle are:
P 1a. The Primacy of Content Words Principle: Learners process content words in the input before anything else (VanPatten, 2007: 117).

Example: “Tomorrow I will call my friend” (tomorrow is a content word to mark FUTURE and more likely to be processed before will by L2 learners).

P 1b. The Lexical Preference Principle: If grammatical forms express a meaning that can also be encoded lexically (i.e., that grammatical marker is redundant), then learners will not initially process those grammatical forms until they have lexical forms to which they can match them (VanPatten, 2007: 118).

Example: “Yesterday I called my friend” (yesterday is a lexical form to express PASTNESS and more likely to be processed before the grammatical form -ed by L2 learners).

P 1c. The Preference for Non-Redundancy Principle: learners are more likely to process nonredundant meaningful grammatical markers before they process redundant meaningful markers (VanPatten, 2007: 119).

Example: “I am calling my friend” (the grammatical form -ing is the only, and therefore, a nonredundant marker of IN PROGRESS, hence more likely to be processed by L2 learners). However, in the sentence “The cat sleeps ten hours every day” the form –s- is made redundant by another element in the sentence encoding the same meaning (third person singular).

P 1d. The Meaning-Before-Nonmeaning Principle: learners are more likely to process meaningful grammatical markers before nonmeaningful grammatical markers (VanPatten, 2007: 120).

Example: “Tom thinks that I am pretty” (that carries no semantic information; hence it is less likely to be processed by L2 learners)
P 1e. The Availability of Resources Principle: for learners to process either redundant meaningful grammatical forms or nonmeaningful forms, the processing of overall sentential meaning must not drain available processing resources (VanPatten, 2004: 14).

*Example:* A) “The strong lioness feeds the baby lions”. B) “The alpha female is the only lion who feeds the herd’s offspring” (early learners are more likely to process -s 3rd PERSON SINGULAR in A sentence than in B, as L2 learners’ proficiency level and their lexical retrieval ability are the key features for this principle. In short, in the above example, the words in the second utterance are far less frequent than those used in the first example, and this makes lexical retrieval more demanding. The complexity of a relative structure, in the second instance, creates a further load for the parser making the processing of the redundant form (-s) harder).

P 1f. The Sentence Location Principle: learners tend to process items in sentence initial position before those in final position and those in medial position (VanPatten, 2007: 125).

*Example:* “It is essential that measures be taken to tackle the issue” (the subjunctive form of be is in medial position; hence it is less likely to be processed by L2 learners)

When L2 learners listen to an utterance or read a sentence, they are presented the linguistic elements of the sentence in a rigidly linear fashion. One sentence element precedes the next such that they must comprehend and interpret the sentence linearly. This “moment by moment computation of sentence structure during comprehension” is called parsing (VanPatten, 2015:2).

Empirical evidence in both first and second language acquisition has revealed that the order of the words plays a role in comprehension and hence in language acquisition (e.g., Slobin, 1973 for L1 acquisition and Lee, 2003 L2 acquisition of
Spanish). VanPatten's First Noun Principle\(^1\) captures a powerful processing strategy that states that L2 learners tend to assign the grammatical role of subject or agent to the first noun they encounter in an utterance. For example, when L2 learners listen or read the following sentence: ‘The boy kissed the girl’ they will assign the role of subject/agent (doer of the action ‘to kiss’) to the noun BOY. Similarly, when parsing the sentence: ‘The boy was kissed by the girl’ again they tend to assign the role of subject/agent (doer of the action) to the first noun BOY which in this case is incorrect. This impedes comprehension and consequently acquisition. VanPatten (2007) developed a set of sub-principles that delineate various factors that attenuate learners’ misassignment of the first noun:


*Example:* ‘The ball was kicked by the boy’ (the BALL is an inanimate object and therefore impossible to kick an animate noun like the BOY, however, the opposite is semantically possible in real life)


*Example:* ‘The man was bitten by the dog’ (although both are animate nouns and capable of performing the action of biting, it is more likely that a dog would bite a man in real life rather than the other way around).

\(^1\) Although this is outside of the scope of the present study, it is worth noting that current research on eye tracking has revealed that normal readers (outside the classroom) do not read from left to right in linear fashion, but they rather jump quite randomly. Thus, one might say that PI is a way to impact on how learners read sentences.
P 2c. The Contextual Constraint Principle: learners may rely less on the First Noun Principle (or L1 transfer) if preceding context constrains the possible interpretation of a clause or sentence (VanPatten, 2007: 124).

**Example:** ‘John insulted Mary with his rude remark about her dress. No surprise John got slapped by Mary.’ (the context provided before the passive structure helps learners understand who got slapped).

The First Noun Principle and its sub-principles provide a model of “what guides learners’ processing of linguistic data in the input as they are engaged in comprehension” (VanPatten, 2007: 116). The First Noun Principle supporting evidence has been documented in child L1 acquisition (Bever, 1970; Slobin, 1966), child L2 acquisition (Ervin-Tripp, 1974; Nam, 1975), and adult L2 acquisition (Lee, 1987; LoCoco, 1987; VanPatten, 1985). Thus, regarding certain structures (e.g., passive voice and causative forms in English), the initial positioning of objects works against learners correctly parsing the utterance in question. VanPatten states, “…this particular principle may have a variety of consequences in a variety of languages. It is not just that learners may get word order wrong, it is also that they may not process case markings for some time, will have difficulties with the pronoun system in some languages, and so on.” (VanPatten, 2004: 16). In other words, the misuse of the First Noun Principle leads to incorrect information being supplied to the developing system. This process affects more than instant communication as wrong information is being accommodated into the developing system it results in negatively affecting acquisition.

In the next section, the First Noun Principle and its corollaries are examined in detail as the First Noun Principle is particularly relevant to the present study.
1.2.1 Word Order

World languages have a typologically canonical word order, for example, SVO (subject, verb, object) for English. However, other word order permutations are permitted not only in English but all foreign languages. Ervin-Tripp (1974) investigated how L1 English speakers interpret sentences in French containing passive constructions. Learners seemed to consistently assign the role of ‘subject’ to the first element they encountered in a sentence. This caused for the sentence to be misinterpreted (passives were misinterpreted as active constructions). González (1997) reported on a study on the acquisition of different word orders for L2 learners of Spanish. In this study, he found evidence that the SVO word pattern is the first-word order to be acquired by L2 learners. This word pattern is followed by OSV and OVS word patterns. This particular finding also seems to be the case for L1 learners of Spanish (Echevarría, 1978). LoCoco (1987) investigated how L2 learners of German interpret OVS utterances. The results of this study indicated a high tendency from the part of the learners to wrongly assign the role of subject to the first noun they encounter in an utterance. L2 learners in this study skipped over case markers and assigned semantic roles using SVO word order. Other studies (VanPatten, 1985; Lee, 1987; VanPatten and Wong, 2004) have demonstrated that L2 learners consistently assign the role of agent to the first noun they encounter in the input string. The First Noun Principle influence both L1 and L2 learners when they are asked to interpret and process sentences containing a word pattern in a variety of languages.

1.2.2 Lexical Semantics

Despite the fact that learners normally use the First Noun Principle to assign grammatical and semantic roles when exposed to language input, there are other
factors which might attenuate this effect. One of these actors is the so-called ‘lexical semantics’. A sentence such as *The cake was eaten by Maria* is unlikely to be misinterpreted because the cake cannot perform the action. LoCoco (1987) and Gass (1989) found that when L2 learners of Spanish and Italian were presented with sentences in which verbs were preceded by inanimate nouns, they relied on lexical semantics rather than word order to interpret these types of sentences. When an action can only be performed by an animated entity, learners rely on lexical semantics.

### 1.2.3 Event probabilities

Learners also make use what they know about the world to interpret sentences. They, therefore, rely on event probability to interpret utterances such as ‘*The student was scolded by the teacher*’. According to real-world knowledge, one interpretation is more likely than another (it was the teacher who scolded the children and not the other way around). In this case, learners do not rely on the First Noun Principle, and they correctly identify that the second noun in the sentence performed the action.

Similarly, in the following sentence *Le Professeur fait étudier le verbe “être” à l’élève*, learners of French are unlikely to misinterpret the meaning of the sentence as if it were the professor who is doing the studying (VanPatten and Wong, 2004: 101). Event probabilities attenuate L2 learners use of the First Noun Principle. That is, “…it is possible (though not necessary) that real-life scenarios might override the First Noun Principle…” (VanPatten 2007: 123).

Researchers have also considered learners’ background knowledge as another possible attenuating factor in the use of The First Noun Principle by L2 learners. Houston (1997) showed that learners tend to rely on their knowledge of certain characters to interpret sentences with OVS word order. Houston compared the
exposure of learners to two sets of sentences. One set of sentences used the names of characters from a video series which was familiar to the learners. The other set of sentences included random names. Despite the fact that the sentences were structurally and semantically identical, they did not rely on the First Noun Principle in the sentences where they knew the names of the characters. Malovrh (2006) also provided similar and consistent findings in his study. He found that learners processed OVS strings that referred to characters from the Simpsons more accurately than they processed OVS strings about made up characters.

1.2.4 Contextual constraints

Background knowledge or topic familiarity is an additional factor affecting the use of the First Noun Principle (VanPatten 2004, 2007). VanPatten and Houston (1998) investigated the effects of context on sentence interpretation. They created ten target sentences containing OVS word order in which a clause preceding the object pronoun provided contextual information. The target sentences were paired with ten sentences that included a preceding clause that did not provide a contextual cue. The target sentences were constructed with the verbs attacked, insulted, rejected, greeted, and kissed. In their study, they found that sentence-internal context attenuated learners’ use of the First Noun Principle for assigning grammatical roles. In the context condition learners assigned the grammatical role of subject to the object pronoun 59% of the time. In the no context condition, learners assigned the grammatical role of subject to the object pronoun 84% of the time. Learners use of the First Noun Principle to assign grammatical roles is quite strong in both the context and no context sentence types, but context does provide learners with an additional clue for processing the formal elements of the sentence. Malovrh (2006) investigated whether the placement of contextual information prior to or after the targeted object
A pronoun would differentially affect learners' accurately assigning agent/subject. He found no difference in learners' performance based on the placement of the contextual information. It is the presence of the contextual information that helps learners not its placement. In other words, “…contextual information…would push [learners] away from interpreting the targeted clause the wrong way” (VanPatten, 2004: 17).

VanPatten’s Input Processing Theory explains how learners interact with and process input in their attempt to understand the meaning it conveys. The Theory model stipulates the principles that guide form-meaning connections and parsing. It explains how L2 learners derive intake from the input they are exposed to. The information is then accommodated in their developing system. The main points of input processing are the following:

(a) L2 learners rely on content words instead of grammatical forms to understand an utterance. In the sentence Yesterday, I played tennis with John in the park, in the attempt to make moment-by-moment connection of surface form with meaning, learners would need to tag played with the fact that it is a verb (<+V>, <-N>), that its meaning refers to playing a sport, that it is past tense not present (<+present> <-past>), and so on. However, learners would initially process the first element (the lexical item Yesterday) they encounter to interpret the sentence as a sentence in the past. By doing this, they would skip the form –ed as in played as it encodes the same semantic information. Learners would initially rely on the lexical item to extract the meaning from the sentence and will not make a form-meaning connection. (This processing strategy is called the Lexical Preference Principle, and it is a sub-principle of the Primacy of Meaning Principle);
(b) Position is a key factor in input processing, elements appearing in initial position are processed first, then follow those at final position and lastly are processed elements appearing in the middle of an utterance (This processing strategy is called The Sentence Location Principle);

(c) L2 learners rely on the First Noun Principle to assign the role of agent in a sentence. They would readily recognise *Lina* as the *doer* in both the following examples: ‘Lina chased Jim’ and ‘Lina was chased by Jim’. In the sentence ‘*The police officer was killed by the robber’*, L2 learners, in the attempt to make moment-by-moment computation of sentence structure during comprehension, would process the first element they encounter in the sentence as the subject of the sentence. Learners would interpret the sentence as if it were the police officer who killed the robber. This will cause a delay in interpreting the meaning of the sentence and therefore a subsequent delay in acquisition. However, as it has been previously discussed, lexical semantics, event probabilities and contextual constraints may well attenuate learners relying on the First Noun Principle.

The questions that follow naturally then concern the second constituent of language performance that is output. Once input has been processed and intaken, and linguistic knowledge has been accommodated into learners developing system, how are words stringed together in production? What are the processes involved in output processing? How does output develop? How is output constrained? What is the role, if any, of input and output practice in SLA? These are the issues discussed in the following sections.

1.3 Output Processing
The present study adopts an SLA model that moves from input to output (VanPatten, 2003). This model is characterised by three main phases (see below: figure 1.1).

\[ \text{Input} \rightarrow \text{Intake} \rightarrow \text{Developing System} \rightarrow \text{Output} \]

\text{Phase 1} \quad \text{Phase 2} \quad \text{Phase 3}

\text{the figure continues to the next page}

\text{Phase 1 = Input Processing}
\text{Phase 2 = Accommodation and restructuring}
\text{Phase 3 = Access and Output Processing}

Figure 1.1. Overview of L2 acquisition processes based on VanPatten (2002b).

L2 learners initially process input through internal processors using the processing strategies presented in this chapter. Input does not automatically enter learners’ minds during the exposure to it. Intake is what L2 learners have perceived and processed in the input (Input Processing phase). Intake is the portion of the input that L2 learners have actually processed. This data is held in their working memory and eventually become acquired. The processes involved in the incorporation of the intake into the developing system are called accommodation and restructuring. Once the information is accommodated, L2 learners can access it for production. The last phase consists of a set of processes that acts on the acquired L2 system and determines what it is available at a given time for production (access and output processing).

Only a part of the input is filtered through intake into the developing system and eventually into output by the learner. The Input Processing Theory explains the strategies that L2 learners use to process input and derive intake from input. Input processing can be manipulated successfully to make intake grammatically richer. Changing the way L2 learners process input might have an effect on their developing system that subsequently should have an impact on how L2 learners produce output.
VanPatten’s model of acquisition it is not concerned though with how learners develop communicative skills. VanPatten (2010, 2015) clarifies that mental representation (implicit representation of the language) and skills are two entirely different entities that develop in different ways. While the creation of the former requires input processing, the latter requires learners’ engagement in communicative tasks in order to develop a particular skill (e.g., speaking skills develop via oral communication). This implies that learners already have some underlying knowledge which they can access for production while they engage in communicative tasks.

Thus, now the discussion turns to output processing and the processes that take place during communication. Of interest to the present study are the developmental patterns focusing on syntactical aspects of interlanguage. Central to output processing is the need to produce the language for communication purposes. It is the message that the speaker wishes to convey what triggers production processing. In that sense, similar to input processing, in output processing content words and word order play a significant role. The first step learners need to take during this type of processing is to access the information needed from their mental lexicon. This is the procedural memory circuits where words and information concerning are stored. This operation entails that a mental lexicon has already been developed. Lexical selection is then followed by function assignment, which involves the syntactic and grammatical assignment onto the lemma selected from learners’ mental lexicon. The next step comprises positional processing, which includes constituent assembly and inflexion.

Now the processor needs to set the order in which the phrasal units appear in an utterance and, at the same time, it computes the function among syntactic
operations. The final step is to encode our message phonologically to canalise it to the output system, that is to articulate it (Levelt, 1992, 1993; Bock and Levelt, 2002). The processing procedures applied in this step, like in the previous ones, do not necessarily follow the order described above. In other words, although the output processor is linear the mapping of surface forms onto underlying meaning allows for non-linearity (Pienemann, 2015). This parallel processing accounts for the high speed of production processing (Levelt et al., 1999). In a nutshell, production’s underlying goal is accessing the correct form to produce meaning. Access is linked to fluency (ease and speed) and accuracy (Lee and VanPatten, 2003). In L1 or advanced level speakers of an L2, both accuracy and speed can be hindered by various constraints (which are out of the scope of the present study). Consequently, misfortune utterances like *slips of the tongue* (accuracy) or the most common speed impediment the *tip-of-the-tongue* phenomenon can occur (Bock and Levelt, 2002). When the discussion turns to early and intermediate L2 learners, accuracy and speed obstructions will happen for distinct reasons. L1 interference (negative transfer) towers amongst them as one of the most frequent. To be more specific, as L2 learners find themselves in a dire to express meaning- apparently because their mental representations of the L2 are still underdeveloped- they readily turn for help to their already fully developed language system, their L1. Learners of related L1-L2 use the afore strategy on the base of similarities between the two linguistic systems, which often (but not always, e.g., false friends can lead to interference) leads to positive transfer of the L1. However, as Ringbom and Jarvis (2009) report when the two linguistic systems are entirely unrelated (e.g., English and Greek or English and Chinese), learners tend to adopt structures from their L1 assuming that the L2 works in a similar fashion. This assumption often leads them to opt for the wrong lexical item or even for a structure
that is based on the L1 system rather than the optimal L2 structure. Apart from the negative transfer (interference), described above, learners also tend to avoid using the unknown new structures, since they fail to find its parallel in their L1. As a result, the acquisition of the structures in question is frequently restrained. Nevertheless, when it comes to the developmental sequences discussed in this section, they are not primarily affected by learners’ L1, they are similar for all. L1 can only influence the speed of development but not the stages per se.

Like input processing, L2 output processing is constrained. Miesel et al. (1981) have explicated two processing strategies: a) the Canonical Word Order Strategy (COS) and b) the Initialization/ Finalization Strategy (IFS). Simply put, the former stipulates that it is easier for learners to produce canonical SVO word order than more diverse word orders; the latter explains that final or initial position of constituents renders them more salient to learners. Thus, it is easier to move an element at the beginning or the end of a produced string than relocate its position within the syntactic string. Linked to the above strategies are the developmental stages that L2 learners follow: a) in word order development (L2 German) and, as Ortega (2009) explains COS and IFS were also applied to identify b) the developmental stages in forming English questions regardless their L1. For the previous five stages have been identified and presented in Table 1 (Miesel et al. 1981), which are cumulative. Therefore, every stage adds to the next one a significant bit until the learner’s mental representation corresponds to the target language grammar. Crucially, at stage 2 learners will more likely produce ungrammatical utterances since this context requires inversion, a process that is acquired later at stage 4.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Pattern</th>
</tr>
</thead>
</table>
| Stage 1 | Canonical Word Order  
S-V-X |
| Stage 2 | Adverb preposing  
X- Subject- Verb |
| Stage 3 | Particle Separation  
Verb… AUX/COMP or particle |
| Stage 4 | Inversion  
X-Verb- subject |
| Stage 5 | Verb- end |
Final position for verbs in subordinate clauses

Table 1.1. Development of word order in L2 German according to Meisel et al. (1981)

It is important to pinpoint that although there are learners able to develop accuracy even at stage 2, most will not be able to produce syntactically accurate utterances. At this point, it should also be underlined that developmental sequences do not focus on accuracy but emergence. That is, only one out of many wrong applications of a particular stage’s pattern suffice to render the learner at this very stage.

Besides the above Pienemann’s Processability Theory (PT) (Pienemann, 1998; 2005; 2015 and elsewhere) has also captured the stages regarding the English questions developmental order and other sequences across different languages (see table 2 and 3). More specifically, Processability Theory is based on two pillars:

- It employs the psycholinguistic approach of Levelt’s (1992, 1993) language generation model to explicate the particular language acquisition problems L2 learners face concerning their processing needs.
- It utilises Lexical-Functional Grammar (LFG; Kaplan and Bresnan, 1995) as the model with which L2 learners’ competence is represented.

Research within this framework has demonstrated that there are certain stages of morphological and syntactic development which follow a rigid hierarchy. Processability Theory identifies those stages and stipulates the hierarchical order in which they are acquired as the fundamental characteristic of Processability Theory. (Pienemann, 1998, 2005) explains that this hierarchy consists of two components: “(1) transfer of information within and between constituents and (2) a number of mapping processes that connect the semantic roles, constituent structure, and grammatical functions of the constituents in a sentence.” (Pienemann, 2015:128).
This operation, feature unification, is essential in Processability Theory and requires learners to hold into their working memory one element until this can be paired with another feature within or across procedures. The processing procedures captured by Processability Theory are applied by learners in the below order as shown in table 1.2.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Procedure</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lemma access</td>
<td>Words or chunks</td>
</tr>
<tr>
<td>2</td>
<td>category procedure</td>
<td>Plural-s, past -ed, -ing and possessive 's</td>
</tr>
<tr>
<td>3</td>
<td>phrasal procedure</td>
<td>Object/ possessive pronouns, adverbs in initial position</td>
</tr>
<tr>
<td>4</td>
<td>the S-procedure</td>
<td>Wh-copula questions, copula questions and phrasal verbs</td>
</tr>
<tr>
<td>5</td>
<td>subordinated clause procedure</td>
<td>3rd singular -s, auxiliary 2nd questions, auxiliary 2nd with negation</td>
</tr>
<tr>
<td>6</td>
<td>Cancel auxiliary 2nd, tag questions, passive structures (advanced learners)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.2. Stages and procedures captured by PT.

Table 1.3 illustrates the six stages of questions emergence in L2 English (Pienemann, Johnston, & Brindley, 1988 in Spada and Lightbown, 1999).

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Words and fragments with rising intonation</td>
<td><em>Dog?</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>Four children?</em></td>
</tr>
<tr>
<td>2</td>
<td>Canonical word order, no inversion, no fronting, with rising intonation</td>
<td><em>It’s a monster in the right corner?</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>The boys throw the shoes?</em></td>
</tr>
<tr>
<td>3</td>
<td>Fronting of a questioning element (wh-word, do, something else)</td>
<td><em>Do you have a shoes on your picture?</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>Where the children are playing? Does in this picture there is four astronauts?</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>Is the picture has two planets on top?</em></td>
</tr>
<tr>
<td>4</td>
<td>Inversion in two restricted contexts: (1) in wh-questions with copula,</td>
<td><em>Where is the sun?</em></td>
</tr>
<tr>
<td></td>
<td>(2) in yes/no questions with auxiliaries other than do</td>
<td><em>Is there a fish in the water?</em></td>
</tr>
<tr>
<td>5</td>
<td>Inversion expands to the full range of target like contexts</td>
<td><em>How do you say proche?</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>What's the boy doing?</em></td>
</tr>
<tr>
<td>6</td>
<td>Negative questions Question tags</td>
<td><em>Why can’t you go?</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>It’s better, isn’t it?</em></td>
</tr>
</tbody>
</table>
Questions in embedded clauses | Can you tell me what the date is today?
---|---

Table 3. Stages of questions emergence in L2 English

Note: in this table, the illustrations were adapted from Lightbown and Spada (2006).

Initially, the learner needs to activate a single word (or a memorised chunk). Clearly, at this stage (lemma access) feature unification cannot be operated since there are no previous procedures for any feature matching to occur. Feature unification is employed from the next stage (the category procedure). At this stage, as the name suggests, lemmas are connected to categorical information (e.g., BOY is a noun, TALK is a verb etc.) and an operation can occur on the lexical item so that, for example, past tense can be produced. During this process, the diacritic feature ‘tense’ is marked with the value ‘past’ and the former is located exactly where the morpheme ‘-ed’ should occur, this means that this procedure does not require any grammatical information storage. Therefore, operations that occur directly on nouns or verbs are plausible at this stage.

Moving on to the next stage, i.e., the phrasal procedure, grammatical information needs to be stored and matched with the appropriate lemma to achieve agreement between the lexical items in the Noun Phrase (NP). This procedure is triggered by the category of the head. Now the value of the diacritic feature of the head needs to match the value of the element(s) belonging to that NP. For example, in the NP ‘a boy’ the value SINGULAR of the word ‘BOY’ is stored and matched with a DETERMINER of the same value namely the lemma ‘A’. At this stage, learners are also able to process various types of feature matching within the NP such as object and possessive pronouns, plural agreement and adverb first.

In the S-procedure and the target language’s word order rules, learners can extend feature matching outside the borders of an NP. At this stage exchange of
information and feature matching occurs between phrases. Grammatical information is stored within S-procedure, and abstract features are matched across clauses, i.e., between an NP and a Verb Phrase (VP). In other words, when an NP is produced, the head of the VP has not thus far been conceptualised (incremental processing); hence, the relevant diacritic information needs to be deposited in the S-procedure to be matched with the appropriate feature of the next phrase. In the following example: *where is Alex going?* The grammatical function of the sentence has already been determined and now word order rules can be applied to acquire *Wh-questions* where the auxiliary is placed second. Verbs with particles, *Wh-* questions where the auxiliary is placed second and copula questions are some of the elements that learners of English can process at this stage.

Once learners have acquired stage four, they come across another challenge, this involves the subordinate clause procedure, which is the penultimate stage to be acquired. Now they need to process subordinate clauses; and, in the next stage (i.e., at stage 6), where indirect questions emerge, they need to stop using a procedure they have just acquired, namely inversion in *wh*-questions. For instance, a learner who has just started producing the inversion correctly in example (2): *Where is Alex going?* She or he must now be able to process example (3): *John asks where Alex is going.* Naturally, this stage is acquired later because learners need to revoke a procedure they have just acquired. Other linguistic feature learners of English can now process are: the 3rd person singular, auxiliary 2nd questions (e.g., *Why did you leave?*), auxiliary 2nd questions with negation (e.g., *Why don’t you talk to me?*) also cancel aux-2nd structures and tag questions (Ellis, 2008). At this point, it is worth reminding that all the above stages are not considered in research as acquired in terms of accuracy and or frequency. If a learner produces a linguistic item that belongs to a particular stage
although not always correctly, this stage is considered processed and the learner can process the next one in line.

To sum up, the above hierarchical order regarding production processing is rigid, and its stages cannot be overridden. Only when a learner is able to process a stage can he or she move on to the next one in line and not to two or even three later stages. Put it differently; it is highly unlikely that a learner can skip stage three and start processing stage four or five. Practically this suggests that when a learner has just acquired question words, for example, it is highly implausible for that same learner to be capable of processing Wh- questions in indirect speech at this point.

The above deliberation leads to a noteworthy implication for pedagogy. If hierarchically ordered processing constraints govern language acquisition, then formal instruction has also a constrained -if any- effect on language acquisition.

More specifically, because learners acquire linguistic features and structures only when they are ready to step up to that particular developmental stage and formal teaching cannot intervene in this developmental route, in a sense that it could aid learners to override these stages, some could claim that instruction does not promote acquisition. However, according to Pienemann (1989) anyone who rushes to interpret Teachability Hypothesis as teaching being ineffective, might find themselves reaching to groundless conclusions for two fundamental reasons:

(a) firstly, because instruction is indeed effective as it can enhance acquisition when learners are taught at the adequate developmental stage, that is, when a developmental feature can be produced then it is also determined as teachable, and;
(b) secondly, because Teachability Theory “is only concerned with the developmental dimension of acquisition” (Pienemann, 1989:61).

Therefore, as empirical findings have demonstrated (Felix, 1981; Hahn, 1982; Daniel, 1983; Westmoreland, 1983 in Pienemann, 1989) this is valid for all contexts of acquisition (i.e., both for natural and formal settings). Albeit they may vary within the margins of the identified output processing constraints (Pienemann, 1989). The following section further discusses the role of instruction. It underlines that although output processing is not free from psycholinguistic constraints, these do not render formal learning ineffective. On the contrary, when research findings solemnly inform pedagogy, instruction can influence acquisition albeit in a restricted fashion. Those restrictions are dictated by processing constraints.

1.4 Implications for the present study

This chapter has considered a model of L2 acquisition that moves from input to output. Input Processing consists of two central concepts: making form-meaning connections and parsing. Input Processing Theory and research attempt to address why L2 learners process some elements in the input and not others when they are exposed to certain linguistic features. The Input Processing Theory consists of two overarching strategies addressing two different aspects of processing

(a) L2 learners are driven to get meaning first while processing language input

(Primacy of Meaning Principle);

(b) L2 learners assign the role of subject to the first noun they encounter in a sentence (First Noun Principle).

Of interest to the present study is the use of the First Noun Principle by L2 learners acquiring English causative forms. When processing syntactic structures, L2
learners tend to assign the role of agent to the first noun they encounter in the sentence. This causes misinterpretation of the utterance and delay in acquisition.

Psycholinguistic research on output processing has identified certain developmental stages. These stages cannot be overridden, and therefore they might hinder learners’ processing of output when linguistic features appear at an earlier developmental stage than the one they can process. In other words, a learner that is at the developmental stage 1 is not yet ready to process a linguistic feature which belongs to a later stage. More specifically, research has indicated that for output processing to be generated there must be a message to trigger this process and a mental lexicon from which words can be accessed and assembled to a meaningful utterance. Primary in production processing, therefore, is the concept that the speaker has already formed a mental lexicon and some mental representation of the language. From the former, lemmas are accessed, and specific messages are produced. Thus, the speaker can communicate with the outside world. It has been explicated above that input is central in the creation of learners’ developing system and therefore, also essential in learners output since they need to access language in order to produce it.

VanPatten’s Input Processing Theory asserts that for mental representations to be created correct input processing is necessary. Once the information is successfully accommodated and restructured into the new system (developing system), learners can access this linguistic knowledge to produce a message.

According to VanPatten (1996) learners bring to the process of L2 acquisition specific internal strategies that aid or hinder the way they process input. Also, learners, regardless their L1 or context of language learning, follow a rigid
developmental order during output processing and these hierarchical stages cannot be overridden by external interference.

As a result of what has been said in this chapter, some pedagogical implications for instruction in a processing framework must be drawn. Instruction should take into consideration the psycholinguistic processes used in input processing. It should provide L2 learners with comprehension strategies to help them to establish accurate form-meaning connections and/or parse syntactic structures correctly. This concept will be discussed in the next chapter and it is different from the concept that underlies output-based instruction. Considering the important role of input processing in SLA, manipulating learners’ input should have a greater impact on their developing system.
CHAPTER TWO: THE ROLE OF INPUT AND OUTPUT-BASED INSTRUCTION IN SLA

2.1 Introduction

What is the role of instruction in SLA? What is the role of input-based practice? What is the role of output-based practice? In what ways can formal instruction, input or output-based, promote second language acquisition? A central topic of debate in the field of instructed second language acquisition has been whether instruction can affect acquisition of language properties such as morphology and syntax. The present chapter is mainly concerned with the characteristics and effectiveness of two types of pedagogical interventions: Processing Instruction/structured input practice and structured output practice.

2.2 The Role of instruction in SLA

Two leading positions concerning the role of instruction can be identified: the first asserts that the role of instruction is limited and constrained; the second states that instruction might have a beneficial role under certain conditions.

*Instruction is limited and constrained*

In his Monitor Model Krashen (1982, 1985) separates acquisition from learning, with the former suggesting an implicit knowledge of the target language and the latter an explicit understanding of forms and rules. The acquired knowledge is what learners use in natural output. The learned system is used to monitor and correct production. Krashen (1982, 1985, 2009) maintains that the role of instruction in SLA is limited. He argues that exposure to comprehensible and meaning-bearing input is the key factor that drives L2 learners to acquire the target language. The acquisition of the grammatical system of a particular language is caused by the exposure to the input...
and not by the practising of grammatical rules. In one of the five hypotheses of Monitor Theory, Krashen states that natural and predictable orders of acquisition constrain instruction. For instance, a morphological feature such as the progressive -\textit{ing} in English is acquired (regardless the learner's L1) before the past tense morpheme -\textit{ed} (or irregular forms), which, in turn, is acquired before the third-person singular -\textit{s}. According to Krashen formal instruction cannot affect acquisition since it cannot alter the specific order in which learners learn a language.

White (2003, 2015) considers language as an abstract and complex system. The elements of language that are universal and built in prior to exposure to the input language constitute a main constraint of instruction. These language universals features constrain the acquisition of grammar.

Pienemann and Lenzing (2015) argue that L2 learners acquire single structures (e.g., negation) through predictable stages. According to processability theory (explicated in detail in section 1.3), instruction is constrained by specific developmental stages since L2 learners acquire grammatical structures in a hierarchically rigid route. Hence, the role of instruction is limited and constrained by L2 learner’s readiness to acquire a particular structure. If instruction does not consider the L2 learners' current developmental stage, it could severely impede acquisition. Pienemann’s view (1998) is that instruction can have negative effects on acquisition if it does not take into considerations learners’ developmental stages. However, if instruction is targeted at grammatical items, which the learners are ready to acquire, then it can be beneficial as it can speed up the rate of acquisition.
Instruction might be beneficial

Instruction cannot alter the route of acquisition such as acquisition orders and developmental sequences. However, instruction, in the form of input manipulations, might speed up the rate of acquisition. Under certain conditions, instruction might facilitate the noticing and, most importantly, the processing of linguistics features more efficiently and more accurately. Long’s review (1983) of the role of instruction did not provide any conclusive findings whether instruction can make any difference in SLA. However, as Long suggested, instruction can be beneficial if it allows for sufficient and adequate exposure to input and takes into consideration learners’ internal strategies and built-in syllabus. VanPatten (2015) assigns a positive role to instruction as it is effective and beneficial if it manipulates input so that learners process grammar. As it has been extensively discussed in the previous chapter, the Input Processing Theory identifies specific internal strategies that learners apply when trying to comprehend and process input. The application of these strategies causes a possible delay in the acquisition of formal linguistic properties as L2 learners consistently fail to make form-meaning connections or parse syntactic structures correctly. Instruction can have a beneficial role when it provides L2 learners with meaningful input which exposes them to sufficient instances of the targeted grammatical form or structure and forces learners to focus on form so that they get the meaning.

Gass and Mackey (2015) suggest that comprehensible input alone might not suffice for L2 learners to develop native-like grammatical competence. They consider the possibility that formal instruction might be beneficial when it exposes learners to enhanced input and applies techniques such as textual enhancement. Instruction, then, might have a facilitative role in helping learners to attend to the formal properties of a
targeted language. These techniques do not require the use of metalinguistic
discussion and explanation of rules. Under this prism, instruction can have a
facilitative role in SLA.

Ellis and Wulff (2015) also maintain that instruction can have a facilitative
though limited role in SLA. It can aid L2 learners to notice target linguistic forms
which might not be as salient during mere exposure of learners to input. However,
they identify a number of factors which can render instruction ineffective. For
instance, instruction is ineffective when learners are not psycholinguistically ready to
acquire a particular target form. Also, instruction cannot facilitate acquisition when
there is a mismatch between explicit knowledge and implicit mental representation.

In conclusion, a rigorous examination of the current views regarding the role
of instruction in SLA leads to three main conclusions. Firstly, instruction cannot alter
the route of acquisition, that is, the acquisition orders or the developmental sequences.
Secondly, although instruction cannot change the course of acquisition, it might be
able to speed up the rate of acquisition through input enhancement. Lastly, instruction
when delivered as a type of “input manipulation,” might play a facilitative role in
SLA as it promotes noticing and processing of the targeted linguistic forms.

2.3 Input-based instruction: Processing Instruction

Input is the language to which learners are exposed to. Input for acquisition is
the language they hear or read and has some communicative intent. To be processed
by L2 learners, input must be comprehensible and carry a message. Learners must
attend that message for input to be successfully processed. Input is the primary
database on which L2 learners build the new linguistic system. VanPatten’s (2015)
model of SLA explains that not all the input becomes intake for the learners. What
does get filtered (via intake) is accommodated into the developing system from where it becomes available to the learner for production. Acquisition is therefore directly dependent on the intake. Altering the way L2 learners process input and enriching intake might have an impact on their developing system that subsequently should affect the way learners produce the target language. In sum, input is essential in SLA. No SLA theory or approach disputes the importance of input. Nevertheless, the question is: Does input suffice for language acquisition? In some cases, it might be necessary to provide grammar instruction to help learners to attend and process input. Input modifications might have positive effects on comprehension and second language acquisition.

Long (1991) has distinguished two main types of grammar instruction: ‘focus on form’ and ‘focus on forms’. He provided a clear definition of these two terms (Long and Robinson, 1998): ‘focus on forms’ refers to a type of instruction that isolates specific linguistic forms, and teaches them one at the time. In this traditional approach, grammar instruction is often characterised by paradigmatic explanations of specific linguistic forms or structures which is followed by mechanical practice (e.g., pattern practice and substitution drills). This type of mechanical practice ignores entirely real-life situations, and it is implemented in a completely decontextualised way. The idea that acquiring grammar can be simply achieved by learning about the grammatical rules of a target language and practice those rules through production tasks (very often mechanical and traditional) has been disputed by many scholars. In recent years, findings from empirical research (Benati 2016, 2017) in instructed SLA and theory have demonstrated that a component of focus on grammar (focus on form) might facilitate acquisition if it is provided with a focus on meaning. The term ‘focus on form’ is characterised by any pedagogical interventions to grammar instruction.
which provide a focus on both meaning and form. Spada (1997:73) has defined more broadly ‘focus on form’ as ‘‘any pedagogical effort which is used to draw learners’ attention to language form either implicitly or explicitly’’.

Input-based pedagogical interventions to grammar instruction play an important role in SLA. This is due to the key role input plays in SLA and to ‘input manipulations’ to grammar instruction which seem to have a positive impact on acquisition.

Processing Instruction is a focus on form pedagogical intervention derived from the Input Processing Theory. VanPatten (1996:60) argued that the primary goal of this instructional tool ‘‘is to alter the processing strategies that learners take to the task of comprehension and to encourage them to make better form-meaning connections than they would if left to their own devices’’. When learners are exposed to input, they tend to rely on internal strategies (see section 1.2 of the present dissertation) to process the input. Because of their internal processing, they might not be able to make correct form-meaning connections. As underscored by Wong (2004: 33) ‘‘the goal of Processing Instruction is to help L2 learners derive richer intake from input by having them engage in structured input activities that push them away from the strategies they normally use to make form-meaning connections’’.

Processing Instruction is an input-based pedagogical intervention to grammar instruction. It is input based as opposed to output-based because the focus is at input processing-level. However, Processing Instruction is not merely an input-based pedagogical intervention to grammar instruction. As maintained by Van Patten (1996: 82), its primary purpose is to ensure that L2 learners process correctly and efficiently forms/structures (one at a time) in the input they receive. It is, therefore, more than a
comprehension-based intervention because in Processing Instruction learners are asked to focus on small parts of the targeted language when they process the input. Psycholinguistics processing (learners’ strategies/processing principles as discussed in the previous chapter) is kept in mind as the main goal of Processing Instruction is for L2 learners to intake a ‘better’ input. As outlined by Lee and VanPatten (1995) because of its nature and characteristics Processing Instruction is certainly an appropriate and effective pedagogical intervention to grammar instruction. Its goal is to increase learners’ opportunities to receive good comprehensible and meaning-bearing input. At the same time, it provides L2 learners with opportunities to focus on linguistic properties of the language. Processing Instruction is effective at enhancing learners’ focal attention during processing towards the relevant grammatical items and not elsewhere in the sentence. Its primary goal is to help learners to circumvent the strategies (processing principles) they use to derive intake data from input language. Processing Instruction does that by pushing L2 learners to rely exclusively on the form or structure to get meaning. In Processing Instruction learners are required to simultaneously focus on form to get meaning to improve their ability to process the right information and make the right form-meaning connections during comprehension. This is a different function from simply noticing a form in the input, which means being consciously aware of something in the input. For example, learners might hear the word ‘played’ and notice that it is different from either ‘plays’ or ‘playing.’ However, they might not connect the ending immediately (verbal inflection) with the concept (e.g. pastness, present) that the action has already taken place, takes place at the moment or is taking place. Processing Instruction is fundamentally different from other input-based pedagogical interventions to grammar instruction such as input enhancement. This is because enhancing a feature in the
input might help learners to notice that feature, but it does not necessarily mean that learners actually link meaning with form or that it facilitates how they can build sentence structure as part of parsing. Processing Instruction facilitates both form-meaning mappings and parsing.

Processing Instruction is that it focuses on the processing of morpho-phonological units as well as sentences. The measures used to assess ‘processing’ are interpretation measures. In Processing Instruction research rules are not tested (e.g., grammaticality judgment tasks, fill-in-the-gap, etc.) but the ability to process is. In Processing Instruction research, when production measures are used, they are not meant to show that speaking or writing skills are developing as a result of its beneficial effects.

Processing Instruction alters the way in which the input is processed by learners, which in turn might affect their developing system. Processing Instruction is not an intervention meant to assist in skill development, but it might help learners to access the right information (form or structure) in order to express meaning.

The main components (VanPatten, 1996; Benati and Lee, 2008) of Processing Instruction have been presented by Lee and VanPatten (1995):

1) Explicit Information about the target linguistic structure/form is provided to the L2 learners. The targeted structures/forms are presented one at a time (e.g. future forms);

2) The Explicit Information provided to L2 learners about the targeted structure/form also includes information on a particular processing principle. Learners are warned that this processing strategy may negatively affect their picking up of the
form or structure during comprehension. An example is the case of passive constructions in English. Learners are warned that the first noun is not always an agent/subject of the sentence (e.g., *John was kissed by Mary*). This information should help L2 learners to be careful when they process input containing passive structures in English;

3) In the last stage of Processing Instruction, learners are pushed to process the targeted structure/form through Structured input practice. Structured input activities expose learners to input which is manipulated in such ways that push learners to depend on form to get meaning. Learners, first, receive Explicit Information about both the targeted linguistic feature and the processing principle affecting that linguistic feature; then, they are pushed to process the form or structure through structured input activities. Processing Instruction, as indicated by Wong (2004:35) ‘pushes learners to abandon their inefficient processing strategies for more optimal ones so that better form-meaning connections are made’. As the key component of this input approach to grammar teaching, Structured input activities help learners to make those form-meaning connections. Guidelines for structured input activities were initially developed (see Figure 1.) by Van Patten and Sanz (1995).

<table>
<thead>
<tr>
<th>1. Present one thing at a time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Keep meaning in focus.</td>
</tr>
<tr>
<td>3. Move from sentences to connected discourse.</td>
</tr>
<tr>
<td>4. Use both oral and written input.</td>
</tr>
<tr>
<td>5. Have learners do something with the input.</td>
</tr>
<tr>
<td>6. Keep the learner’s processing strategies in mind.</td>
</tr>
</tbody>
</table>

Figure 2.1. Structured input Activities Guidelines (VanPatten and Sanz,1995)

As Wong (2004) has pointed out, these guidelines need to be followed to the letter to develop effective structured input activities. She argues that structured input activities do not resemble any other input-based practice. According to Wong
(2004:37) ‘for an activity to be a structured input activity, that activity must somehow push learners to circumvent an inefficient processing strategy’. The most important step in developing structured input activities is to identify the processing problem in a target structure/form. A form or structure in a given L2 can be affected by one single processing problem or a combination of processing problems which makes L2 learners process input inefficiently and sometimes misinterpret sentences. Following are analysed in more detail the guidelines developed by VanPatten and Sanz (1995).

1) The rules should be divided into smaller parts and taught one at the time during the lesson. Explicit information about the linguistic feature is provided to the L2 learners before they are exposed to Structured input activities. During Processing Instruction students receive meaningful input as it should help them to make correct form-meaning connections. We should avoid providing L2 learners with lots of information and grammatical rules as learners possess a limited capacity for processing information. Presenting L2 learners with a smaller and more focused amount of information will enhance the opportunity for learners to pay more focused attention (Lee and Van Patten, 1995, 2003). Therefore, we must develop structured input activities that focus on one form at the time so that it will facilitate learners to map one form to one meaning.

2) Structured input practice should encourage learners to make form-meaning connections. VanPatten (1996:68) indicated that ‘if meaning is absent or if learners do not have to pay attention to meaning to complete the activity, then there is not enhancement of input processing’. Keep meaning in focus is crucial when developing structured input activities. During structured input practice learners must focus their attention on the referential meaning of the input to which they are exposed. A well-structured input activity is the one where students must attend to the meaning of the
sentence to complete the task. In the example below the gender agreement in Italian is expressed morphologically by the endings –a- for feminine nouns and –o- for masculine nouns. Learners will have to pay attention to the ending of the adjectives describing either Sofia Loren or Luciano Pavarotti (e.g.: é bella, é Italiano) to establish whether the sentence is referring to one or the other. However, after learners have established which person is being described, they need to express their opinions on whether they agree or disagree. To complete the task and express their opinions, learners must comprehend the meaning of each.

3) Initially, L2 learners are exposed to sentences. For, L2 learners have limited capacity for processing, and they need to direct their attention and efforts to process input for its meaning first. However, at a later stage, L2 learners should be able to move on from the processing of short sentences to the processing of connected discourse. The exposure to connected discourse should happen only when learners have already had opportunities to process the new form or structure in short and manageable input.

4) In structured input activities, both oral and written input should be used because some L2 learners respond better to one mode of input than to the other. The use of different input types accounts not only for individual differences but as highlighted by Farley (2005: 15) “‘hearing the forms allow only for sound-meaning connections, whereas written form-meaning connections are made via reading’”.

5) Learners should interact with the input they receive. In structured input activities, learners are asked to respond whether they agree or disagree with an utterance if it is false or true or how likely it is in real-world situations. During structured input activities L2 learners are encouraged to make form-meaning
connections. Structured input activities must promote learners’ engagement in processing the input sentences, and they must require learners to respond to the input sentences in some way.

6) Structured input activities should be designed to deter learners from relying on their non-optimal processing strategies. During Processing Instruction, the input is manipulated so that it alters learners’ reliance on one particular processing principle. The primary aim of structured input activities is to correct inefficient processing strategies and instill more efficient ones in L2 learners.

Two are the types of structured input activities: referential and affective. Referential are the activities for which there is a right or wrong answer and learners must rely on the targeted form or structure to get meaning. Affective are the activities in which learners should express a personal opinion, belief, or some other affective response. In these type of activities, learners are engaged in processing information about the real world. VanPatten (1996, 2002a, 2004) explains that affective activities reinforce the form-meaning connections that were established during referential structured input activities practice.

To sum up, structured input practice engages learners in processing the input sentences. Also, learners must respond to the input sentence in some way through two types of structured input activities: referential and affective.

2.3.1 The role of structured input practice

One line of research in the Processing Instruction research framework is the one which has particularly investigated what the main effects of the three components of Processing Instruction are. The main objective of this classroom-based research
was to establish which factor is the most effective component in Processing Instruction. Is it the explicit information or the structured input practice? Or perhaps a combination of the two? (full Processing Instruction)

The original study which addressed these questions was conducted by Van Patten and Oikkenon (1996). Fifty-nine secondary school students participated in this classroom experiment. Participants were studying Spanish in their second year. The linguistic feature under investigation was the object pronouns in Spanish and the investigated processing principle was the First Noun Principle. Participants were assigned to three groups: a) explicit information only; b) structured input activities; c) Processing Instruction (both components). Instruction lasted four hours. A pretest/posttest design was used with assessment tasks that tested participants’ competence on both interpretation and production. The statistical analysis of the mean scores of the pretests on both interpretation and production tasks at sentence-level indicated a low level of knowledge of object pronouns in Spanish for the three groups. The statistical analyses comparing pre- and posttests showed that the Processing Instruction and the structured input only group made similar gains whereas the Explicit Information only group did not. The statistical analyses revealed that the benefits obtained (on both the interpretation and production tasks) by both the Processing Instruction and the structured input activities group were more significant than the group receiving only explicit information. The result of this study was that structured input activities were found responsible for learners’ gains. A significant finding of this study is that the structured input group performed as well as the Processing Instruction group. As Van Patten (1996) indicated, these results strongly suggest that it is the structured input activities itself that are responsible for the relative effects observed in the present and previous studies.
Benati (2004a) compared the effects of Processing Instruction, structured input activities and explicit information on the acquisition of Italian future tense. This study addressed the Lexical Preference Principle. Thirty-eight university students studying Italian at undergraduate level participated in this classroom experiment. Participants were assigned, as in the case of the original study, into three groups receiving respectively: Processing Instruction; structured input only; explicit information only. The three groups received instruction for a total of six hours over a period of two consecutive days. One interpretation and one production task were developed for this study. The interpretation task consisted of twenty aural sentences (ten were distractors) where subjects had to interpret whether the sentences heard referred to a present or future event. The test was developed to measure the learners’ ability to interpret sentences containing the target form. The written production task was developed to measure subject’s accuracy in producing correct future tense forms (subjects had to produce five sentences). The mean scores of the pretests on both interpretation and production tasks showed that subjects in both groups possessed a very low level of knowledge about the future tense in Italian. After instruction, the mean scores on the posttests for both the Processing Instruction group and the structured input only increased. The results of this study revealed similar improvements for both groups. The statistical analyses indicated that the Processing Instruction and the structured input group made similar gains whereas the explicit information group did not. These results confirmed the findings obtained in the VanPatten and Oikkenon’s study (1996). It was the Structured input activities component that is responsible for learners improved performance.

Benati (2004b) conducted an experiment on the acquisition of Italian gender agreement. The processing principle under investigation was the Preference for Non-
Redundancy Principle. The Structured input activities were developed with the intention of helping learners to process the target form efficiently and correctly. Thirty-one students studying Italian at undergraduate level were the population in this study. Again, participants were assigned to three instructional groups: one received Processing Instruction; the second structured input only; and the third group received explicit information only. The three groups were exposed to instruction over two consecutive days for a total of four hours instruction. As in previous studies measuring the effects of Processing Instruction components, interpretation (one measure) and production (two measures) were used in a pre-and posttest design. The interpretation task consisted of twenty audiotaped sentences (ten targets and ten distracters). Learners were asked to make the right gender agreement connections. The written production task was developed to measure the accuracy in which learners can produce accurate gender agreement forms. In the oral production task, task learners were shown two pictures, one illustrating life in a city and the other a small town and they were asked to describe and comment on experience in these two environments. The task was designed to elicit the use of correct gender agreement in more spontaneous speech. The mean scores of the pretests on both interpretation and production tasks (written and oral) indicate the groups had a very little knowledge of gender agreement in Italian. Once more the results of the statistical analyses were similar to previous ones. The Processing Instruction and the structured input groups made significant gains on the sentence-level interpretation test and the sentence-level production tests, while the explicit information group made minimal gains. In the oral production task, the structured input group made identical gains to the Processing Instruction group compared to the explicit information group.
Wong (2004) found positive results for structure input practice alone in a study where she made the same comparisons as in the studies described previously in this section. She compared the effects of Processing Instruction, structured input activities and explicit information on the acquisition of French negative with the indefinite article. The processing principle under investigation was the Lexical Preference principle. Ninety-four undergraduate, intermediate students of French participated in this study. Instruction lasted one day. Materials were designed with the intention to alter the processing problem. Two assessment tasks were implemented one interpretation and one production task at sentence-level. A pretest/ posttest design was adopted for the data collection. The statistical analyses on the pretests for both the interpretation and the production task revealed very little knowledge of the French negative with indefinite article form. After the instructional period, the mean scores revealed that in both the interpretation and the production task both the Processing Instruction group and the structured input only group were not different and better than the explicit information (EI) group and the control group. The little improvement on the interpretation and production tasks (but not statistically significant) of the explicit information only group was attributed to the characteristic of the particular target structure under investigation. Wong (2004: 195) argued that “learners might be able to rely on the EI to help them make gains on this type of task. The fact that the EI group was not better than the control group, however, also suggests that the impact of this information was minimal”. The structured input component seemed to be the causative factor for the beneficial effects of Processing Instruction. These results are confirmed for Spanish, French and Italian and on a variety of linguistic items that represent various processing problems. The addition of explicit grammatical information in the Processing Instruction treatment did not cause higher improvement.
Sanz (2004) provides further evidence in support of the effectiveness of structured input activities in the acquisition of Spanish object pronouns. The First Noun Principle was the processing strategy which was attempted to alter through structured input practice. Forty-two students studying Spanish participated in the study. Participants were assigned to two groups: one receiving structured input activities only; and a second group receiving the same structured input treatment plus explicit feedback on their wrong answers. Three tests were used. The interpretation and production sentence completion tasks were the same task used by Van Patten and Oikkenon (1996). The video-retelling task was developed to elicit the ability for participants to produce a connected short composition. The statistical analyses on the pretests for all measures indicated little knowledge for both groups. The mean scores and, consequently, the statistical analysis on the posttest results for both interpretation and production tasks revealed no significant differences in the two groups. The evidence provided in this study supports that the structured input with or without explicit information is responsible for learners’ competence to interpret and produce Spanish object pronouns.

Farley (2004) carried out a study in which he measured the effects of Processing Instruction and structured input activities on the acquisition of Spanish subjunctive of doubt. The processing principle attempted to be altered via structured input practice was the Sentence Location Principle. Fifty-four students participated in this study. Participants were divided into two groups. One group received full Processing Instruction and the other structured input practice. Instruction lasted two hours. Likewise, most of the previous studies, one interpretation and one production sentence-level tasks were used to measure learner’s performance. Results on the pretests for the interpretation sentence-level task were very similar for both groups.
and revealed little knowledge of the target item. The mean scores in the first posttest and the delayed posttest showed that the Processing Instruction group outperformed the structured input group. Therefore, the results of the statistical analyses conducted in this study were slightly different from the previous ones. Even though both groups made significant improvements from pre- to posttests, the Processing Instruction group outperformed the structured input practice group both in the interpretation and the production task. Farley attributes this finding to the complexity of the linguistic item he investigated, the Spanish subjunctive.

Lee and Benati (2007a) also investigate the effectiveness of structured input activities on the acquisition of the past forms and affirmative vs negative present forms in Japanese. These forms are affected by a combination of different processing problems. Therefore, the principles attempted to be altered through structured input practice were two, The Lexical Preference Principle and The Sentence Location Principle. In this study, subjects were beginning level students who were studying Japanese in a private school in Italy. All participants were adult native speakers of Italian and Twenty-seven participants were assigned to two groups. One group received structured input activities, and one group received traditional instruction over a four hours instructional period. A pretest/posttest design to examine the short-term effects of the two instructional treatments was adopted. Two assessment measures were produced for each linguistic feature: one for the interpretation tasks and one for the production tasks. The statistical analyses carried out on the test results- of both interpretation or production tasks- showed significant differences in the two groups. The groups who received structured input practice performed better than the traditional instruction groups on the interpretation tasks on both linguistic features of Japanese (affirmative and negative present tense and past tense). The results from the
production tasks also confirmed previous findings. The structured input activities
groups performed equally to the traditional instruction groups on the production tasks
on both linguistic features of Japanese (affirmative and negative present tense and
past tense).

In conclusion, research has revealed that the positive effects of Processing
Instruction can mostly be attributed to the structured input practice. It is the essential
component that helps learners process linguistic items and their underlying formal
features which are then decoded by the internal processors (VanPatten, 2015). It is the
component that helps L2 learners enriching their intake. Furthermore, Van Patten and
Rothman (2013:18) argued that “learning means extracting ‘something’ from the
linguistic input we are exposed to and somehow internalizing it so that our mental
representation of language is somehow changed”. Rule-learning is not the objective in
Processing Instruction, and this underscores the importance of structured input
practice during this type of treatment.

2.4 Output-based instruction: Structured Output

Output represents L2 learners’ ability to express a particular meaning by
accessing a particular form or structure and stringing forms and structures together.
Swain (1995, 2000, 2005) has pointed out that comprehensible input might not be
sufficient to develop native-like grammatical competence and learners also need
output. ‘Pushed output’, as Swain coined it, is speech or writing that will push L2
learners to produce language accurately, appropriately and correctly. Swain
(1995:249) holds that “producing the language might be the trigger that forces the
learner to pay attention to the means of expression needed in order to successfully
convey his or her own intended meaning.” On the whole, Swain identifies four main
functions of output in SLA. First, L2 learners test their hypotheses about the structures and meanings of the target language. Second, they receive important feedback which helps them verify these hypotheses. Third, learners are forced to shift from meaning-based processing of the target language to syntagmatic mode. Lastly, it develops fluency and automaticity in interlanguage production. Furthermore, output produces better input for learners as they can negotiate meaning. By doing so, they also provide input for the rest of the class or their interlocutor. Output promotes syntactic processing. L2 learners have the opportunity to attend to the means by which meaning is conveyed. Also, output provides learners with the opportunity to test their hypotheses about grammar. During output production, learners get the chance to move from sentence to discourse. In so doing, output production promotes the development of discourse skills.

From another standpoint, VanPatten (2003) explains that learners' ability to produce forms and structures in output does not necessarily entail the acquisition of these forms and structures. It is important to make a distinction between output as interaction with others and output as the practice of forms and structures. In VanPatten’s (2003) view, learners’ implicit linguistic system develops from learners processing of the input to which they are exposed. Output, on the other hand, promotes noticing of linguistic forms and structures in the input and conscious awareness of language and language use. Access the information in the developing system is the ability to retrieve a particular form or structure to express meaning. Also, output provides additional input to learners; they can modify and consolidate their existing knowledge. According to VanPatten (2003), the role of output is significant because it promotes interaction with other learners and language awareness, but it does not play a direct role in the creation of the implicit linguistic
system. As Van Patten (2004:42) explained: “we have little if any experimental data that clearly show that acquisition is somehow output dependent.” VanPatten (2010) distinguishes between skill acquisition and the creation of mental representations. Explicit information on grammatical features and manipulation of forms through drills and output practice might help learners to develop certain skills to use specific forms/structures correctly and accurately in controlled tasks. Nevertheless, it has minimal impact on the development of the implicit linguistic system (mental representation) responsible for acquisition. In mechanical practice L2 learners do not need to understand what they are saying. There is only one possible answer and there is no focus on meaning. In conclusion, we should consider grammar output practice via activities which are meaning-based. During effective grammar output tasks, learners must make output which conveys a meaningful utterance. L2 learners must understand the meaning of both stimulus and their answer. They need to exchange previously unknown information, and their range of responses must be open.

Structured output activities are a communicative form-focused activity type. They have been proposed by Lee and VanPatten (1995, 2003) as an adequate replacement for the ineffective mechanical drills output practice. These activities possess two fundamental characteristics: ‘(1) They involve the exchange of previously unknown information; and (2) They require learners to access a particular form or structure in order to process meaning’ (Lee and VanPatten, 1995: 121).

Lee and VanPatten (1995:121) have proposed specific guidelines to construct structured output activities. These are similar to the guidelines for the development of Structured input explicated in detail in the previous section, albeit with a focus on output for apparent reasons. Therefore, the guidelines to develop structured output activities are presented below in figure 2.2.
1. Present one thing at a time.
2. Keep meaning in focus.
3. Move from sentences to connected discourse.
4. Use both oral and written output.
5. Others must respond to the content of the output.
6. The learner must have knowledge of the form or structure.

Figure 2.2. Guidelines for Structured Output activities (VanPatten & Lee, 2005)

1) Structured Output activities present only one function or/and one form of the targeted grammatical feature at a time. For example, if simple present is the targeted item an activity could focus on a) the third person singular (one form) talking about b) habits (one function) in the present. For instance, within the activity statements like the following could be produced ‘my friend plays football on Saturdays’.

2) The activity must be meaningful, that is the statements the learners produce must be in context. Again, for simple present tense learners could be asked to interview their classmate about the things she/he normally does on a weekday. In the first step, they will have to think of questions they would like to ask, and then, in the second step, they start the interview keeping notes of the answers their classmates give them.

3) Guiding learners first to produce sentences, as in steps one and two described above, which they can then connect to discourse is crucial because they can easily access the forms when at sentence-level and then move on to more complex production like discourse. Consequently, the third step in the above example could ask learners to join the answers they got from the interviewee into a paragraph and read to the class their classmate’s typical weekday. It is important to point out here that this type of output also generates input for the rest of the class.

4) The fourth guideline has been covered with the up to now steps of the activity since both speaking and writing is involved.
5) The above step also covers the fifth guideline as it makes learner’s output purposeful. In this case ‘others must respond to its content’ by keeping notes of the answers given, join them in discourse and read it to the rest of the class. The main aim of this guideline is to ensure that the interviewer attends to the meaning conveyed by the interviewee. Other examples of activities that have learners respond to the content of the produced message are the following: comparing it with something else, fill in a grid or chart based on what it was said, indicating agreement disagreement. This list is not exhaustive Lee and VanPatten, (1995:175) provide more examples.

6) The last guideline is crucial as it suggests that for Structured Output to be effective there must be some form of knowledge of the feature already accommodated into the learners’ developing system. In other words, Structured Output is intended to help learners access already existing or developing knowledge for this reason they should follow Structured input practice (Lee and VanPatten, 1995).

2.5 Implications for the present study

The role of instruction in SLA is limited and constrained. A number of factors constrain the effect of instruction. Language acquisition is ordered-like and sequenced-like. There are orders and sequences of acquisition which are natural and cannot be skipped. If instruction is provided when L2 learners are not psychologically ready to acquire the feature, instruction might even be detrimental for acquisition. However, instruction can have a facilitative role in enhancing processing of the target forms or structures if it is provided in the form of structured input activities. Processing Instruction is an effective pedagogical intervention to grammar instruction which helps L2 learners to process input correctly and efficiently and therefore increases learners’ intake of the target language. The effects of structured
input practice seem to affect learners’ developing system as learners seem to access the relevant information for production.

In this chapter, the characteristics and the nature of Processing Instruction have been examined. Processing Instruction takes into consideration how learners first process the input they receive, and structured input practice helps learners to circumvent their default processing problems. Empirical research has demonstrated that it is the structured input practice component of Processing Instruction which is the causative factor in the positive effects of this pedagogical intervention in SLA. It is effective as it provides learners with opportunities, through structured input activities, to process efficiently and appropriately forms and structures in the input. It is the Structured input component that is ultimately responsible for the changes in learners developing system and eventually in their output.

In this chapter, it has also been argued that structured output practice can have a facilitative role in helping L2 learners to access information in the system to string sentences together to express meaning. Structured output tasks enable learners to access forms or structures from their developing system to communicate ideas (message). A coherent second language process is the one that takes learners from processing a grammatical feature in the input to accessing the feature in the internal grammatical system for meaningful production purposes. Knowing this indicates that instruction should initially be designed and used to facilitate learners’ processing before learners they are engaged in language production. The suggestion is that structured output practice should follow structured input tasks to ensure L2 learners develop the abilities to interpret and produce sentences and discourse containing a target linguistic feature. Grammar instruction should move from input to output practice.
CHAPTER THREE: EMPIRICAL RESEARCH ON THE DISCOURSE-LEVEL AND LONG-TERM EFFECTS OF PROCESSING INSTRUCTION

3.1 Introduction

Processing Instruction is the pedagogical model derived from the Input Processing Theory. VanPatten and Cadierno (1993) for the first time investigated the effects of Processing Instruction on the acquisition of object pronouns in Spanish. Since this original study, the relative effects of Processing Instruction have been measured in different languages, linguistic features, populations and from different perspectives. This chapter review empirical research on the effects of Processing Instruction in the following areas relevant to the present study:

a) Empirical studies investigating the discourse-level effects (interpretation and production) for Processing Instruction.

b) Empirical studies measuring long-term effects of Processing Instruction.

3.2 Empirical Review: The original study of Processing Instruction

The original study which first measured the effects of Processing Instruction is the one carried out by VanPatten and Cadierno (1993). Its importance, as it was pinpointed by Lee (2015), lies on – apart from the results it brought about - the fact that it set out the prototypical design for all studies conducted within this framework during the last two decades. For this reason, the study will serve as a point of reference in this chapter. VanPatten and Cadierno (1993) set out to investigate the relative effects of Processing Instruction versus traditional output-based instruction on the acquisition of Spanish direct object pronouns. This feature is affected by the First Noun Principle. They investigated the impact of Processing Instruction on the
acquisition of direct object pronouns as learners seem to misinterpret sentences containing direct object pronouns in Spanish. Eighty university students, learners of Spanish at intermediate level, participated in this study. They received different instructional treatments over two consecutive days of instruction. Subjects were assigned to three groups. One group received traditional instruction which emphasized grammar explanation and oral-written production; the second group received Processing Instruction as described in the previous section; and a third group was used as a control receiving no instruction. A pretest \posttest design was used to measure the possible effects of instruction. Two different assessment tasks were developed by the researchers, one sentence-level interpretation task and one sentence-level written production task. The performance of the three groups at pretest level on the interpretation and production tasks indicated a low level of knowledge on the use of object pronouns in Spanish. Hence, any effects found in the posttests should be attributed to the type of instruction received. The results from the statistical analyses showed that Processing Instruction is superior to traditional instruction as learners receiving Processing Instruction improved in their ability to interpret object pronouns in Spanish correctly and furthermore the study demonstrated that this pedagogical intervention to grammar instruction was also effective in improving learners’ production.

Since this original study, there has been a large research database of classroom-based studies measuring the effects of Processing Instruction compared to other pedagogical interventions. The results of the replication studies comparing Processing Instruction and traditional Instruction (see Lee, 2015 for a full review) have reached the following conclusion:
a) Processing Instruction is a more effective approach to grammar instruction than traditional instruction as it seems to have a direct effect on learners’ ability to process input (various processing problems, various linguistic forms, different languages and populations). L2 learners have gained the ability to interpret sentences efficiently and correctly. Processing Instruction is responsible for L2 learners increase rate of processing;

b) Processing Instruction provides L2 learners with the ability to produce the target linguistic features during output practice. Processing Instruction is responsible for the increase rate of accuracy in production. The Processing Instruction groups perform as well as the traditional instruction groups on the various production tasks used in the experimental studies previously reviewed, and this is a remarkable finding given that participants in the Processing Instruction group are never asked to produce the target features through output practice.

As underscored by Collentine (2004) there is enough evidence to support the view that Processing Instruction is a more efficient approach to grammar teaching than traditional instruction. This outcome triggered researchers’ curiosity towards exploring which was the most effective component in Processing Instruction. Research asking whether explicit information, structured input or the combination of the two was what causes learners process input effectively is one strand of research reviewed in the previous chapter. Overall, the findings have revealed that the causative variable of Processing Instruction’s effectiveness is the structured input practice component. At the same time, albeit the large database indicating the superiority of Processing Instruction over other instructional interventions, two more valid questions were raised by research: Can the same results be found when
Processing Instruction is measured with discourse-level measurements? And, also, do the effects of Processing Instruction last over time?

3.3. Processing Instruction and discourse-level effects

A growing body of research measuring the effects of Processing Instruction has given this pedagogical intervention significant support. The positive effects of Processing Instruction have been found for a variety of romance (e.g., Spanish, French, Italian) and non-romance languages (e.g., German, English and Japanese), on a variety of morphological, syntactic and semantic linguistic items and among learners from a different first language (English, Italian, Greek, Chinese and Japanese). Processing Instruction studies provide evidence that L2 learners who received this type of instruction performed significantly better on interpretation sentence-level tasks than learners receiving other types of instruction (e.g. traditional instruction, output-based instruction). Processing Instruction studies also provide evidence that Processing Instruction can cause equal improvement compared to output-based approaches in learner’s performance in different sentence-level production tasks (oral and written mode). DeKeyser, Salaberry, Robinson, and Harrington (2002) argued that any true system-wide effects will be revealed more clearly in the discursive level tasks and not sentence-level tasks. Two questions have been raised: Can we measure the effects of Processing Instruction on discourse-level production tasks? Can we measure the effects of Processing Instruction discourse-level interpretation tasks?

3.3.1. Discourse-level production

VanPatten and Sanz (1995) first investigated whether Processing Instruction can bring about similar results with discourse-level tasks as it has provided with both
interpretation and production sentence-level tasks on previous studies. Spanish direct object pronouns were under investigation. The said linguistic item is affected by the First Noun Principle. Forty-four third-year university students of Spanish participated to this study. Subjects were assigned to two four groups: two receiving Processing Instruction groups and two control groups. Instruction lasted two weeks. The effects of instruction were measured on three different tasks: two sentence-level tasks (the same used by Van Patten & Cadierno, 1993), a structured question-answer interview and a video narration task. A pretest/posttest design was used. The statistical analyses on the pretests for all measures indicated equally little knowledge for the four groups. The statistical analysis of the posttests results revealed that Processing Instruction groups outperformed the control groups in all measures. This outcome proved that Processing Instruction is also effective when measured on less controlled and discourse-level tasks. Altering the way L2 learners process input leads to a change in linguistic knowledge which L2 learners can access and use both in sentence and discourse-level production tasks. Overall, the outcome of this study provided further evidence on the effectiveness of Processing Instruction in more communicative tasks, that is in discourse-level tasks rather than only sentence-level tasks.

Cheng (2004) also investigated the effectiveness of Processing Instruction with discourse-level assessment tools. The target linguistic item under investigation were the Spanish copular verbs: ser and estar. The target items were related to two of the Input Processing model principles (VanPatten, 2004): L2 learners tend to process content words in the input before anything else and L2 learners prefer processing ‘more meaningful’ morphology before ‘less’ or ‘non-meaningful morphology’. She also investigated for long-term effects. Eighty-eight university students studying Spanish participated to this study. Participants were assigned to three groups: one
receiving Processing Instruction, one receiving traditional instruction and a control group. A pretest/posttest design was used which included three types of tasks: one interpretation and one production sentence-level task and a guided composition. The statistical analyses on the pretests for all measures indicated little knowledge of the target item for the three groups. The results of this study showed that the Processing Instruction group outperformed both the control and the traditional instruction group. Participants receiving Processing Instruction were better at interpreting and accessing the target item for production at both sentence and discourse-level tasks. These findings support previous research findings that reveal the superiority of Processing Instruction and add to that pool of data results obtained with discourse-level instruments.

Sanz (2004) provides further evidence in support of the effects of structured input on the acquisition of Spanish object pronouns. The processing strategy to be altered by the provision of structured input practice was the First Noun Principle. Forty-two university students studying Spanish participated in the study. Sanz used two groups: one receiving Structured input only; and a second group receiving the same Structured input treatment plus explicit feedback on their wrong answers. Three tests, all in written mode, were used in a pre-test/post-test design. The interpretation and production sentence-level tasks were the same tasks used by Van Patten and Oikkenon (1996). The video-retelling task was developed to elicit the ability for participants to produce a connected short composition. The statistical analysis on the pretests for all measures indicated little knowledge for both groups. The mean scores on the posttest of both groups revealed a similar improvement in the participants’ ability to interpret and to produce tasks at sentence-level and, also, to produce a connected short composition using the target item investigated. The statistical
analyses carried out on the test results (interpretation or production tasks) showed no significant differences in the two groups. Structured input with or without feedback is effective in helping learners interpret sentences and produce both sentences and discourse containing Spanish object pronouns.

Sanz and Morgan-Short (2004) provide further evidence in support of the effects of Structured input activities on the acquisition of Spanish object pronouns. The processing strategy to be altered by the provision of Structured input practice was the First Noun Principle. Forty-two university students studying Spanish participated in the study. Sanz and Morgan-Short used two groups: one receiving structured input activities only; and a second group receiving the same structured input treatment plus explicit feedback on their wrong answers. Three tests, all in written mode, were used in a pretest/ posttest design. The instrumentation was the same as described above in Sanz (2004), the interpretation and production sentence-level tasks were the same tasks used by Van Patten and Oikkenon (1996). The video-retelling task was developed to elicit the ability for participants to produce a connected short composition. The statistical analysis on the pretests for all measures indicated little knowledge for both groups. The mean scores on the posttest of both the structured input group and the structured input plus feedback (SI+F) group stated a similar improvement in the participants’ ability to interpret and to produce a connected short composition using the target item investigated. The mean scores of the two groups in the posttest revealed an improvement for the structured input only group and a significantly higher improvement for the SI+F group. However, the statistical analyses carried out on the test results for both interpretation and production tasks showed no significant differences in the two groups.
Overall, Van Patten and Sanz (1995), Cheng (2004), Sanz (2004) and Sanz and Morgan-short (2004) have demonstrated that Processing Instruction is effective not only at the sentence-level but also at the discourse-level production tasks. Nonetheless, further research needs to address this issue from different perspectives and populations to be able to generalise the current findings.

3.3.2 Discourse-level interpretation

Lee (2004) argued that Processing Instruction has been investigated in various linguistics features affected by one or a combination of processing problems and in different languages. These effects have been measured on interpretation and production sentence-level tasks and production discourse-level task. As he has suggested (Lee, 2004: 319) “because Processing Instruction affects discourse-level production, I can hypothesize that it will also affect discourse-level interpretation”.

Hikima (2010) investigated the effectiveness of Processing Instruction on the acquisition of the Japanese passive construction. The acquisition of Japanese passive construction is affected by the First Noun Principle. The subjects pool consisted of ten students of Japanese all native speakers of English. The participants were assigned to two groups: one of seven subjects receiving Processing Instruction and one control group. Instruction lasted for two hours. The aim was to measure the effects of Processing Instruction with discourse-level interpretation tasks. A pre-test/post-test design was used with the following assessment tasks: a sentence-level interpretation, a sentence-level production, a guided recall of a dialogue and a guided recall of a story containing Japanese passive structures. The statistical analyses on the pretests indicated little knowledge for both groups. The statistical analyses in all measures revealed a significant effect for instruction at both sentence and discourse-level. The
outcomes of this study showed that Processing Instruction is effective in bringing about positive results in learners’ ability to interpret the Japanese passive structures when embedded in discourse.

Benati and Lee (2010) investigated the effectiveness of Processing Instruction on the acquisition of the English past tense. This target feature is affected by the Lexical Preference principle. Twenty-Nine Chinese primary school students were assigned to three groups: one receiving Processing Instruction; one receiving traditional instruction; and the third group as control group. Instruction lasted for six hours. The main aim of the study was to investigate whether learners could interpret the target feature in discourse-level tasks. The two groups were compared in a pretest /posttest design including two interpretation tasks: a sentence-level and a discourse-level interpretation task (dialogue). The pre-test scores ensured that all three groups possessed equally little knowledge of the target feature. The statistical analysis of the posttest revealed a significantly higher improvement for the Processing Instruction group on both sentence and discourse-level interpretation tasks. The findings from this study echoed the ones found by Hikima and indicate that Processing Instruction is effective in helping learners interpret linguistic items embedded in discourse.

Overall, studies investigating the effects of Processing Instruction using discourse-level assessment tools are in the minority, and indeed, future work could thoroughly investigate how learners process and produce discourse containing different target forms and whether these effects are durable.
3.4 Processing Instruction and long-term effects

All Processing Instruction research has used a pre-test to post-test design to assess the effects of instruction. The pre-test, administered before instruction serves a variety of purposes. Firstly, the pre-test is used to screen the potential participants. Learners, who already possess a high level of knowledge on the investigated structure, do not need instruction on that structure. Typically, in Processing Instruction research, the data from learners who score over 50% or 60% on the pre-test(s) are usually eliminated from the statistical analyses. The second function of the pre-test scores is to match the knowledge level of the target structure across the different instructional treatment groups. The pre-test provides us with the mechanism to assign learners to different treatment groups or to ensure that intact groups begin at the same place. That is, the groups must have equivalent knowledge of the target before receiving (or not in the case of control groups) an instructional intervention. The scores of all groups must be comparable prior to treatment in order to assert that any changes in the post-test scores are due to the instructional treatments, not to learners' differential prior knowledge.

Immediate post-tests are used after the end of the instructional period in experimental research. Immediately following instruction learners' knowledge is assessed. The general expectation is that at this time, learners' competence of the target item would be at its highest. Delayed post-tests measure whether the effects of instruction are durative. Their importance lies on the consensus that should a treatment have any effect on the developing system of the learners, this effect must still be present long after instruction (Anderson, 1990; Ellis, 1994 cited in Hulstjin and De Graaf, 1994; VanPatten, 2004; Dekeyser & Prieto Botana, 2014).
One of the difficulties in measuring long-term effects is controlling participants’ exposure to the target item to ensure the measuring of instructional effects and not any other external factors. Within the Processing Instruction framework, most designs have checked retention within a few weeks after instruction. After two weeks (Farley, 2001, 2004; Cox & Sanz, 2015), after three weeks (Benati, 2001; Cheng, 2002, 2004), after twenty-four days (Toth, 2006), after four weeks (Benati, 2004; Cadierno, 1995; Keating and Farley, 2008; VanPatten and Cadierno, 1993); and, after six weeks (VanPatten et al., 2009; VanPatten, Farmer and Clardy, 2009, Marsden and Chen, 2011). Very few studies have examined durative effects for Processing Instruction after a period that exceeds two months, among them is VanPatten and Fernández’s (2004) with their delayed posttest assigned eight months after instruction. The researchers used the same instructional materials and assessment tasks like the ones in the original study conducted by VanPatten and Cadierno (1993) for their study to ‘fall squarely in line with replication research’ (VanPatten and Fernández, 2004:277). By doing so, the researchers isolated the issue of long-term effects in order to address it for the first time in the Processing Instruction research agenda. The target item investigated was the Spanish OVS sentences and clitic pronouns as in the original study. Forty-five university students enrolled in third-semester Spanish as foreign language classes participated in this study. All subjects received Processing Instruction for two consecutive days, which aimed to aid them to override the First Noun Principle and correctly process OVS and OV type sentences in Spanish. Two assessment tasks were used, and a pretest, immediate posttest and delayed posttest design was adopted to measure participants’ interpretation and production competence.
The mean scores on the pretests for both interpretation and production tasks ensured that all subjects were at an equivalent low level regarding their ability to interpret and produce the Spanish OVS and OV type sentences. The mean scores on the interpretation tasks indicated an improvement from pretest to immediate posttest. However, these scores declined on the delayed posttest. Likewise, learners’ mean scores improved significantly on the production tasks from the pretest to the immediate posttest however the scores declined on the delayed posttest. Overall, statistical analyses revealed a significant improvement of learners’ ability to interpret and produce the target structure under investigation; and, although this improvement declined eight months later, there was still a significant difference in their mean scores from the pretest to the delayed posttest. Processing Instruction has a long-term impact, although declined, which can last for at least eight months. However, as Doughty (2003) observed the use of sentence-level assessment tasks limits the claim that the participants implemented no conscious knowledge during posttests. Marsden (2006) looked at the effects of Processing Instruction vis a vis Enriched Input (EnI) instruction on the acquisition of verb inflection in French. This target feature was chosen to explore instructional effects regarding learners’ Lexical Preference strategy. Her main goal is out of the scope of the present study as she conducted two experiments with subjects at different proficiency levels to look at instructional effects with relation to learners’ initial state of linguistic representation. Nevertheless, the measuring of long-term effects of Processing Instruction is of interest to the present study. Therefore, only the first of her two experiments -the only one that provided delayed effects data -will be reviewed. Twenty-seven thirteen- and fourteen-year-old, British students participated in the first experiment.
They were randomly assigned to the two experimental groups (Processing Instruction and enriched input). The assessment tasks used checked for both interpretation and production competence at sentence and discourse-level. The subjects were provided with a battery of tests in both oral and written mode which consisted of four measures (reading, listening, writing and speaking). For practical reasons, the oral tasks of the tests were taken by a subsample created randomly. A pretest/posttest design was adopted. The delayed posttest was administered between fourteen and sixteen weeks after instruction. The mean scores on the pretests for all tasks indicated that both groups were of an equivalent level in terms of interpreting and producing the targeted linguistic item. The immediate posttest on the interpretation tasks (both modes and performance types) revealed a significant improvement for the Processing Instruction group which was maintained in the delayed posttest; the enriched input made no significant gains throughout the study. Similarly, on the production tasks results from the posttests indicated a significant improvement for the Processing Instruction group which was maintained by the delayed posttest. The enriched input group showed an improvement only in the writing task from pretest to immediate posttest which was not maintained at the delayed posttest. In short, results from this study brought to light that the Processing Instruction group made overall statistically significant gains in all four measures which were retained at the delayed posttest the same was not true for the Enriched Input group that made no significant gains from instruction.

Agiasophiti (2013) looked at the effects of input based instruction on the acquisition of German case marking and word order. The processing strategy investigated is the First Noun Principle. A final pool of ninety-nine school-aged English learners of German participated in this study. They were randomly assigned
to three experimental groups: a) the first received Processing Instruction with typographically coloured input enhancement; b) the second received unenhanced Processing Instruction; c) the third received no instruction on the target form and served as control group. Materials and assessment tasks were delivered online and focused on written mode. Two sentence-level tasks were used, one interpretation and one production (fill-in-the-gap task) to assess learners’ ability to interpret and produce the target linguistic item. A pretest/ posttests design was implemented with the delayed posttest administered twelve to fourteen weeks after instruction. The initial online placement test from the Goethe Institute revealed that participants were of mixed abilities with the majority being placed at an A2 level but also some learners were placed at A1 level. The pretests on both the interpretation and production tasks showed no statistical difference between groups and ensured that the three groups were homogeneous in terms of knowledge prior to instruction. The immediate posttests on the interpretation tasks indicated a significant improvement for both the Processing Instruction with input enhancement and the Processing Instruction alone groups. The statistical analysis found no significant difference between the two groups. Both groups maintained their gains up to fourteen weeks after instruction. No effects were found for the control group. Similarly, the mean scores on the production tasks indicated that both experimental groups improved after instruction. At the immediate posttest, the enhanced group outperformed the Processing Instruction alone group. However, the statistical analysis revealed no significant difference between the Processing Instruction with input enhancement and the Processing Instruction alone group at the delayed posttest. The Control group did not improve from pre- to immediate and delayed posttests. Overall, results from this study indicate that Processing Instruction either enhanced or unenhanced is always an effective tool in
helping learners interpret and produce German case marking and word order correctly.

Kasprowicz and Marsden (2017) investigated the effects of explicit information followed by input-based practice. Namely, referential activities (one of the two components of Structured input) which promote form meaning connections (Task Essential -Form Meaning) and another task-essential type of input practice which promotes noticing of the target feature (Task Essential -Form) instead of processing (i.e., making online form-meaning connections). The target item under investigation was the German definite article case-marking cues (der, den) which is affected by the First Noun Principle. A hundred and thirty-eight school learners (aged 9-11) from seven different classes of British primary schools, native speakers of English participated in this study. They were randomly assigned to three groups: a) the first received Explicit Information followed by task essential -form meaning; b) the second received the same kind of explicit information followed by task essential – form; c) the third served as control group. A pretest, posttest and delayed posttest (9 weeks after instruction) design was adopted. The pretests on both the interpretation and production tasks showed no statistical difference among groups and ensured that the three groups were homogeneous in terms of knowledge prior to instruction. The immediate posttests on both the comprehension and production tasks indicated a significant improvement for both instructional groups (task Essential -form meaning and task essential -form). The delayed posttest revealed the same patterns showing that instructional gains were retained for both groups nine weeks after instruction. The only exception was a decrease in the metalinguistic task on the delayed posttest scores. The control group did not improve from pre- to immediate and delayed posttests. Overall, the results show that both input-based interventions can bring about
durable gains in both comprehension and production of the German definite article case-marking cues (der, den).

3.5 Implications for the present study

The first part of this chapter has reviewed studies that have investigated Processing Instruction’s effect with discourse-level tasks. Overall, the results of these studies reveal that Processing Instruction is effective in bringing about positive effects in discourse-level tasks. This review has shown that discourse-level effects have been measured either in interpretation or production discourse-level assessment tasks. However, there are no studies including both measurements for the acquisition of the same linguistic feature.

The review provided in this chapter on studies measuring durative effects for Processing Instruction has revealed that there is only one study measuring long-term effects. Overall studies reviewed in this section revealed that Processing Instruction helps learners make gains after instruction which are maintained in the short and medium-term. Can the effects of Processing Instruction be measured using a post-test after a more extended period of exposure?
CHAPTER FOUR: EMPIRICAL RESEARCH ON THE EFFECTS OF PROCESSING INSTRUCTION

4.1 Introduction

In this chapter, empirical research investigating the relative effects of Processing Instruction and meaning-based output instruction will be reviewed with the aim to highlight the main purpose of the present study. The chapter concludes with the motivation and the research questions of the present study.

4.2 Processing Instruction versus Meaningful Output-based Instruction

This section presents the results of studies which have compared Processing Instruction with meaningful output-based Instruction. These studies have measured the effects of Processing Instruction with a different type of output-based instruction. VanPatten and Cadierno (1993) originally compared Processing Instruction to traditional instruction as traditional instruction was still the dominant approach to grammar teaching in foreign language classrooms in both the United States and Europe in the early nineties. The materials developed for this study was defined as ‘traditional’ because the activities involved mechanical output practice. Processing Instruction was proved to be more effective than traditional instruction. However, because of the nature of traditional instruction, there was a call for comparing Processing Instruction versus a more communicative and meaningful output-based pedagogical intervention to grammar instruction. Processing Instruction was therefore compared to a different output based pedagogical intervention called ‘meaning output-based instruction’. This approach includes the use of Structured Output activities which are meaningful activities in nature (see chapter two in this thesis).
Farley (2001a, 2001b, 2004) was the first who compared the effects of Processing Instruction versus meaning output-based instruction on the acquisition of the Spanish subjunctive in two consecutive studies. Processing Instruction was compared to an output based approach, and the activities learners were exposed to did not contain any mechanical drills. The activities for the meaning output-based approach were based on the tenets of structured output activities proposed in Lee and VanPatten (1995, 2003) described in detail in chapter two. The effects of the two instructional treatments were measured on the acquisition of Spanish subjunctive. This feature is affected by the Sentence Location Principle. In Spanish, the subjunctive is located in medial position where it is least likely to be processed. In the sentence, *No pienso que entienda el problema* (I do not think he/she understands the problem) the subjunctive inflection (the *-a* of *entienda*) is in the middle of the sentence and the Sentence Location Principle predicts that learners will overlook the subjunctive inflection because it is not located in a more salient position. The materials were designed to alter the processing problem. A pre-test/post-test design was adopted. The assessment tasks consisted of one interpretation and one production task to measure subjects’ ability to interpret and produce the Spanish subjunctive.

In Farley’s (2001a) first study twenty-nine university students enrolled in a fourth-semester Spanish course were assigned to two different instructional treatments: Processing Instruction and meaningful output-based instruction. The instructional period lasted for two days. There was no statistical difference between the two groups prior the beginning of the instructional period on interpretation and production of subjunctive forms in Spanish. Two posttests were administered, and the results of the Processing Instruction group on the interpretation tasks were higher than the meaning output-based instruction in both tests. However, there was no statistical
difference between the Processing Instruction and meaning output-based instruction group in the two production posttests indicating a similar improvement in the ability of all participants to produce the Spanish subjunctive. Overall, the results showed that Processing Instruction had a more significant effect than meaning output-based instruction on how L2 learners interpret subjunctive forms in Spanish. Both instructional treatments had a similar effect on how L2 learners produce sentences containing those forms.

One hundred and twenty-nine undergraduate students participated in Farley’s second experiment (2001b, 2004). As in the above design, subjects were assigned to two instructional groups: one receiving Processing Instruction and the other meaning output-based instruction. Both groups were assessed following a pre-test/post-test design which included interpretation and production tasks. There was no statistical difference between groups on the pretests, which revealed little knowledge of the target item on the interpretation task and no knowledge on the production task. Farley’s results on the posttests differed from his previous study. The statistical analyses in the two posttests on the interpretation task indicated similar improvements for all participants. Likewise, both the Processing Instruction and meaning output-based instruction group improved similarly in their ability to produce the Spanish subjunctive forms on both posttests. In short, the results of this study differed from the previous one in that both groups made equal and significant improvements on both the interpretation and the production tasks. Farley attributed the equal performance of the two treatments to one main factor: The meaning output-based treatment is different from traditional instruction practice as it does not contain mechanical drills practice and its communicative and interactive nature might have resulted in incidental input.
Benati (2005) investigated the effects of Processing Instruction, traditional instruction and meaning output-based instruction on the acquisition of English past simple tense. The relevant processing principle, in this case, was the Lexical Preference Principle. The subjects involved in the present studies were Chinese (forty-seven subjects) and Greek school-aged learners (thirty subjects). Participants of both experiments studied English in their countries. Subjects were assigned to three groups. The first received Processing Instruction; the second received traditional instruction; and, the third received meaning output-based instruction. Two assessment measures, one interpretation and one production task, were implemented in a pre- and post-test design. The results are very consistent in both studies (study 1= Chinese participants; study 2= Greek participants). In both studies, the mean scores on the pretests for the interpretation task showed equally little knowledge of the English simple past tense for all groups. The post-tests on both the interpretation and the production task revealed similar findings in both experiments. Overall, the results showed that Processing Instruction had positive effects on the processing and acquisition of the target feature. In both studies, the Processing Instruction group outperformed the traditional instruction and meaningful output-based instruction groups in the interpretation task. All groups made equal gains in the production task. The Processing Instruction treatment was superior to the other two output treatments in terms of helping learners to interpret utterances containing the English past. The results on the sentence-level task involving the interpretation of the English past simple tense are in line with previous findings on Processing Instruction research which showed that Processing Instruction is successful in altering learners processing default strategies.
The results of the statistical analyses indicated that Processing Instruction, traditional instruction and meaning output-based instruction made an equal improvement (from pretest to posttest) on the production task (sentence-level task). Even in this case, the findings from the present experiment support the main results of previous research on Processing Instruction which showed that the Processing Instruction group made significant similar gains from the pretest to the posttest compared with the two output groups in production tasks. The evidence obtained in this study on the production task suggests that the effects of Processing Instruction not only have an impact on the way learners interpret sentences but also on the way learners produce sentences. Processing Instruction has altered the way learners processed input, and this affected their developing system and subsequently on what the subjects could access for production.

Gely (2005) investigated the effects of Processing Instruction and meaning output-based instruction on the acquisition of French imperfect tense. The processing problem affecting this linguistic item is the Lexical Preference Principle. Thirty-three college students learning French in second year participated in this experimental study. The subjects were randomly assigned to three groups: a) one group received Processing Instruction; b) the second group meaning output-based instruction; c) the third group acted as a control group and received no treatment on the target feature. Gely (2005) adopted a pre-test /immediate post-test/ delayed post-test design and used three different tasks to measure the effects of instruction: one interpretation task and two production tasks (a completion text and a written production task). The results of this study resembled the ones obtained by Farley (2001a) and Benati (2005). The pre-tests indicated equally little knowledge for participants in both the interpretation and the production of the French imperfect tense. The post-tests on the interpretation task
indicated that the Processing Instruction group obtained much higher scores than the meaning output-based instruction group and the control group. This group made steady improvement compared to the meaningful output-based instruction and the control group which did not improve. In the production task, both groups made similar gains indicating a consistent improvement. These results were confirmed in the delayed post-tests administered three weeks later. Again, the Processing Instruction group outperformed the other two groups on the interpretation task and the Processing Instruction group, and the meaning output-based instruction group were equal on the production tasks no gains were found for the control group.

Morgan-Short and Bowden (2006) carried out a study to investigate the effects of Processing Instruction and meaningful output-based instruction. The researchers focused on word order and object pronouns in Spanish. Forty-five first semester Spanish students were assigned to three groups: a) one receiving Processing Instruction; b) the second receiving meaning output-based instruction; c) a control group which received no instruction on the target features. Two assessment tasks- one interpretation and one production- were developed and used in this study to test participants’ ability to interpret and produce sentences containing the target forms correctly. The researchers adopted a pre-test/immediate post-test/ delayed post-test design. The pretests on both interpretation and production tasks revealed equal knowledge of the target linguistic item for all participants. Results of the immediate posttest on interpretation task indicated that the two instructional groups made significantly higher gains than the control group. The gains found from pre- to immediate posttest for the two instructional groups were equal. However, there was a significant loss for the meaningful output-based instruction group from post-test1 to pos-ttest2. Again, in the production task, the mean scores of the instructional groups
were higher than the ones of the control group. In the first post-test, the meaning output-based Instruction group outperformed the Processing Instruction group and the control group. However, this difference between groups was not maintained in the second post-test. As pointed out by Morgan-Short and Bowden (2006:56) “the analysis of our results is straightforward: in Processing Instruction, input based practice leads to form-meaning connections evidence in both interpretation and production test gains, whereas in the meaning output-based instruction, learners might have been able to establish or strengthen form-meaning connections via both output-based practice and the input they receive in instruction and feedback”.

Lee and Benati (2007b) provided further support to the effectiveness of Processing Instruction when compared to meaning output-based instruction. In a parallel study, they contrasted the effects of these two instructional treatments on the acquisition of the Italian subjunctive of doubt and opinion and the French subjunctive of doubt. The processing problems for these target items are three: a) the Preference for Non-Redundancy Principle; b) the Meaning-Before-Nonmeaning Principle; and c) the Sentence Location Principle. As it was explained previously, the subjunctive presents a processing challenge for learners. They need to process the morphology of the verb in subjunctive forms while this can be redundant by the introductory verb (‘dubito’ in the following example) and furthermore because this appears in sentence-final position. For example, in the sentence ‘Dubito che Giorgio lavori’ (I doubt that George works) the verb ending -i in the place of the -a (indicative) is difficult to be processed by early learners. Similarly, the same processing problems are in effect for learners of French regarding the processing of the subjunctive of doubt. Forty-seven university students, all native speakers of English, enrolled in an intermediate-level Italian language course participated in the first study. Sixty-one university students,
all native speakers of English, enrolled in a beginning-level French language course participated in the second experiment. Participants in both studies were randomly assigned to four experimental groups: a) Processing Instruction delivered in classroom; b) meaning output-based instruction delivered in classroom; c) Processing Instruction delivered online; d) meaning output-based instruction delivered online. All groups received four hours of instruction. Two assessment tasks— one interpretation and one production task were developed and used in a pre-test/post-test design to examine learners’ ability to interpret and produce the target features under investigation. One important factor in this study is that the online delivery isolated ‘incidental input’ from the Meaningful Output-based Instruction group. The reader is reminded that this has been identified as the main reason for the differential results found in previous studies reviewed above (Farley, 2001b; Morgan-Short and Bowden, 2006). Results of the pre-tests for both studies, therefore for both target features, indicated a homogeneous low level of competence for participants to interpret and produce the target items. The findings from both studies showed no statistical difference for mode delivery regarding Processing Instruction on the interpretation task. However, in the first study only, they did indicate significant difference for mode delivery regarding meaning output-based instruction, with the meaning output-based instruction classroom delivery group to outperform the meaning output-based instruction online group on the interpretation task. These results were not mirrored in the second study. On the production task, all groups made equal gains. Finally, this parallel experiment supports the results obtained by most of the studies investigating the effects of Processing Instruction. Statistical analyses indicated that Processing Instruction is better than meaning output-based instruction in helping learners to process the subjunctive of doubt in French and subjunctive of doubt and opinion in
Italian no matter the form of delivery. The results obtained in the two parallel studies confirm the effectiveness of Processing Instruction in improving learners’ performance in both interpretation and production tasks. Furthermore, the group receiving the meaning output-based instruction treatment delivered via computer terminals, received no ‘incidental structured input’, unlike in the case of Farley’s (2001b) and Morgan-Short and Bowden’s (2006) studies. This different mode of delivery should explain the difference in their results and the results obtained by Lee and Benati (2007a). As stated by the researchers ‘...could be the fact that both treatments were compared through different modes of delivery. In the case of the meaning output-based instruction and Processing Instruction in the treatments delivered via computer terminals, learners did not receive input from an instructor or from interacting with other learners’ (Lee and Benati, 2007b: 122).

VanPatten, Inclezan, Salazar and Farley (2009) conducted an experiment in which they compared the effects of Processing Instruction to Dictogloss on the acquisition of the Spanish word order. One of the reasons that led the researchers to conduct this study was the materials and assessment tasks used in Qin’s (2008) study. In the materials for the Processing Instruction group, they noticed items which led learners to rely on the Event Probabilities and Lexical Semantics to get meaning instead of focusing on the problematic strategy, the First Noun Principle. In the assessment tasks, they observed that participants could have used certain test taking strategies ‘rendering the score of the entire interpretation test questionable’ (VanPatten et al., 2009:562). A hundred and eight second-semester students enrolled in a Spanish course at Texas Tech University participated in this study. They were assigned to three groups: a) one receiving Processing Instruction; b) one receiving Dictogloss, and c) one that served as control group receiving no instruction on the
Spanish word order. Three tasks were developed to assess participants’ ability to interpret and produce target linguistic item: one interpretation task, one sentence-level production task and a paragraph level reconstruction text. A standard pre-test, immediate post-test and delayed post-test design was adopted. The mean scores on the pretests for interpretation and production tasks indicated that the three groups were equivalent at pretest level in their ability to interpret and produce the target feature, any subject that obtained a score over 60% was excluded from the final pool. The mean scores on the immediate posttest for interpretation tasks indicated an improvement for all groups. More specifically, the Processing Instruction group made more significant gains immediately after instruction which declined six weeks later. The Dictogloss group made fewer gains which were retained over six weeks’ time. The Control group also made minimal gains. The statistical analyses indicated that the Processing Instruction group performed significantly better than the Dictogloss and the Control group on both the immediate and the delayed post-tests. The mean scores on the immediate posttest for the sentence-level production tasks indicated an improvement for all groups which declined by the delayed post-test. There was no significant difference between groups, but only the Processing Instruction group maintain significant gains on the delayed post-test. The mean scores on the immediate post-test for the reconstruction task indicated a modest improvement for the Processing Instruction and Dictogloss group but no improvement for the control group. Six weeks later all groups’ performance declined. The statistical analyses showed no significant difference between the two experimental groups. Both outperformed the control group but lost these gains on the delayed post-test. Overall, the results are in line with those obtained by Processing Instruction research. The Processing Instruction group outperformed the other two groups on the interpretation
tasks. All groups made gains on the sentence-level production task, but only the Processing Instruction group maintained them six weeks later. Finally, only the Processing Instruction and the Dictogloss group made gains on the reconstruction task, but neither group could maintain them on the delayed post-test.

VanPatten, Farmer and Clardy (2009) also conducted a study contrasting the effects of Processing Instruction and meaningful output-based instruction on the acquisition of Spanish object pronouns. The processing problem was the First Noun Principle. This study was a partial replication of a previous study by Keating and Farley (2008). The main purpose of the replication was that the meaningful output-based instruction treatment in Keating and Farley (2008) was operationalized as Processing Instruction plus output-based instruction (exposition of learners to incidental structured input). Because of the concern for the Processing Instruction-like activities in Keating and Farley’s (2008) material, VanPatten, Farmer and Clardy reworked their activities in which there were possible conflations of processing and meaning-based output instruction. One hundred and eight university students were assigned to three groups: a) one receiving Processing Instruction; b) the second receiving meaning output-based instruction; and c) a control group which received no instruction on the target item. Two assessment tasks were used, one sentence-level interpretation and one sentence-level production task. A pre-test/ immediate /delayed posttest design was adopted. The mean scores on the pretests for both interpretation and production tasks ensured that all groups had an equivalent low-level ability to interpret and produce the Spanish object pronouns. The mean scores on the interpretation task showed that all groups improved after treatment.

However, the statistical analysis revealed that the Processing Instruction group performed significantly better than the other two groups on both post-tests despite the
decline on the delayed post-test. The mean scores on the production task indicated that all groups improved over time. The statistical analysis revealed a significant difference for the Processing Instruction and meaning output-based instruction group on the immediate posttest but not for the control group. However, this improvement declined six weeks later for both groups. In short, findings from this study were similar to other replication studies reviewed in this section and showed that when meaning output-based instruction is not combined with Processing Instruction and therefore does not involve processing of input in any way has no overall advantage over Processing Instruction.

Processing Instruction is a very effective approach to grammar instruction in that it has never failed to yield significant improvement in learner performance on either interpretation or form production tasks. When presented with a processing problem in the L2, learners can be taught to alter their processing strategies thereby delivering better intake (i.e., grammatically richer) to their developing systems. This better intake yields improved performance on both interpretation and production tasks. The effects of Processing Instruction have shown that Processing Instruction is more efficient than meaningful output-based instruction which consists of structured output activities that are meaningful activities. The activities target forms and are produced not with the sole intention of practising the target item, but rather to communicate opinions, beliefs, or other information related to a designated topic. Overall, the results of the studies comparing Processing Instruction versus meaning output-based instruction and reported in this chapter consistently showed that Processing Instruction, regardless of the mode of delivery (i.e., classroom or computer), is superior to meaningful output-based instruction. The output treatment,
although containing meaning-based activities, does not seem to be successful at producing positive effects on students’ performance.

Based on the research reviewed in this section, these are the main findings:

a) Processing Instruction is an effective approach to alter a variety of L2 learners default strategies in different languages and with native speakers of a variety of L1s;

b) Processing Instruction is overall more effective than meaningful output-based instruction.

4.3 Studies comparing combined input and output practice

Two recent studies have looked at the effects of structured input and Processing Instruction in combination with different types of output-based instruction.

Mystkowska-Wiertelak (2011) investigated the effects Processing Instruction alone and in combination with an output-based treatment on the acquisition of English reported speech. The linguistic feature investigated in this study is a complex grammatical phenomenon that requires the application of knowledge regarding morphology (e.g. tense changes), syntax (e.g. word order) and semantics (e.g. use of the appropriate introductory verb). According to the researcher reported speech is affected by three Input Processing principles: a) the Lexical Preference; b) the Preference for the Non-redundancy; c) the Sentence Location Principles.

Seventy-four first year university students of English philology were assigned to four groups. The first group (Input henceforth) received Processing Instruction + interpretation tasks practice. The second group (Output henceforth) received output-based instruction mostly mechanical in nature. The third group (Combined
henceforth) a combination of Processing Instruction and output—based instruction (mostly mechanical) and the fourth received no instruction and served as Control group. Instruction lasted three to four hours and took place on two consecutive days. Two assessment tasks, one sentence-level interpretation and one production (paraphrasing), were developed and used in a pre-test/immediate post-test and delayed (4 weeks) post-test design. The average scores on the pre-tests for the interpretation task indicated an equally high level of knowledge for all participants (about 70%). The mean scores on the immediate post-test for the interpretation task showed an improvement for the Processing Instruction (+ Input-based instruction), and the Combined group, the Output and the Control group deteriorated slightly. However, the Input group could not retain its gains four weeks later. Paradoxically, the Output group improved on the delayed post-test. The statistical analyses indicated that the Input group outperformed all three groups on the immediate posttest, but these gains were not retained by the delayed posttest when the Output and the Combined groups outperformed the Input and the Control group. The average scores on the pre-tests for the production task indicated an equally lower ability for the participants to produce the reported speech. However, there was a statistically significant difference between the performance of the Input and the Control group (Input > Control). The mean scores on the immediate posttest showed an improvement for the three instructional groups. The control group revealed a slight increase in the delayed post-test.

The statistical analysis indicated that the Combined group performed statistically better than the other three experimental groups. No significant difference was found between the Input and the Output group. Similar results were obtained in the delayed post-test. Overall, the results of this study indicated that a combination of input and output-based instruction is most beneficial.
Despite the main findings of this study, there are a number of methodological shortcomings:

a) it is not clear how and why Processing Instruction was implemented to aid learners to circumvent default processing strategies (i.e. The Lexical Preference Principle, The Non-Redundancy Principle, and The Sentence Location Principle) when coping with reported speech, particularly when dealing with correct processing of modal verbs. It was not clear whether this linguistic feature was actually affected by specific processing problems;

b) input was not operationalised only as structured input. The material and the assessment tasks included a mixture of comprehension and interpretation tasks, and were not genuine structured input activities;

c) high pre-test scores were obtained. This is because the population consisted of advanced-level university students of English philology. Typically, within the Processing Instruction research framework, participants who score higher than 50% or 60% are excluded from the data analysis since this implies an already existing knowledge of the feature;

d) the operationalisation of the treatments might be somewhat confusing and not reliable. Structured input was operationalised differently in the first group compared to the third combination group, while output-based instruction was exactly the same both in the isolated and in the combined group. Hence, it is not clear whether we are comparing the same type of instruction alone and in combination;

e) the improvement of the control group from the immediate posttest to the delayed posttest, when no instruction or practice on the target item occurred for one
month, might imply some form of test familiarity or test-taking strategy from the part of the participants.

Kirk (2013) investigated the effects of Processing Instruction alone and combined with output-based meaningful instruction on the acquisition of the Spanish Subjunctive in three conjunctural phrases. The structures with the infinitive (para / antes de / sin + infinitive) and with the subjunctive (para que / antes (de) que / sin que + subjunctive) were examined. The target feature is affected by the Sentence Location and the Preference for Non-redundancy principles. Two parallel experiments were conducted with participants of different proficiency level. Seventy intermediate and high-intermediate high-school students were assigned to five groups (the advanced students to three groups and the intermediate students to two groups). More specifically, the advanced students were assigned to three groups. One received only Processing Instruction over three days of instruction (PI+PI+PI). The second received Processing Instruction for two days and meaning-based output practice on the third day (PI+PI+O). The last group received a different sequence of Processing Instruction and output-based practice (PI+O+ PI). While the intermediate students were assigned to two groups: a) one identical to the group (a) described above receiving only Processing Instruction over the three days of instruction (PI+PI+PI); and, b) one group receiving less Processing Instruction and more Output instruction than the other experimental groups in this study that is (PI+O+O). Three interpretation tasks at sentence-level and two production tasks (translation of sentences and writing a dialogue) were developed. A pretest/ immediate post-test and delayed (one week) post-test design was adopted. Results on a pre-test level for both the interpretation and production tasks indicated that participants of all groups possessed a comparable level of knowledge on the use of the Spanish subjunctive. For the first experiment, results
on the interpretation tasks indicated an improvement for all groups in the immediate posttest and from posttest1 to posttest 2. The statistical analysis revealed that this improvement over time was significant, but there was no significant difference between groups. Likewise, the average scores on the production tasks indicated an improvement for all groups from pre- to posttest1 and from pre-test to posttest 2. The statistical analysis revealed no significant difference between groups nor between the scores from posttest1 and posttest 2. To sum up, in the first experiment all groups improved significantly after instruction on both their ability to interpret and produce the Spanish subjunctive and this improvement was maintained one week after instruction. For the second experiment, results on the interpretation tasks showed an increase for both groups from pre-to posttest 1 and posttest 2. The statistical analysis revealed a significant difference between groups the Processing Instruction only group outperformed the Processing Instruction +Output +Output group. On the production tasks both groups made significant gains from pre-test to posttest1, but solely the Processing Instruction only group made significant gains from pretest to posttest 2. The statistical analysis revealed no significant difference between groups.

Overall, the results of this study indicated that all groups improved from pre-test to posttests in both the interpretation and production tasks, showing that Processing Instruction is an effective instructional intervention. The study also indicates that output-based instruction does not enhance or hinder the effects of Processing Instruction.
4.4 Summary of empirical research measuring the effects of Processing Instruction

To sum up, research within the Processing Instruction framework has identified structured input practice as the causative factor for the positive effects of Processing Instruction. Furthermore, overall results from research comparing structured input versus structured output (meaningful output practice) indicated that structured input is more effective in helping learners acquire the target item under investigation. These studies have mainly measured the two treatments using interpretation and production tasks at sentence-level.

Findings from empirical research have also indicated that Processing Instruction is effective when measured at discourse-level. The studies found in the current research database have measured discourse effects either on interpretation or production tasks. No study has measured these effects on both interpretation and production in the same design. Also, no study has investigated whether these effects are longitudinal.

Long-term effects of Processing Instruction have been measured at sentence-level, and preliminary results seem to indicate that they are longitudinal. However, this strand is in the minority of studies investigating the effects of Processing Instruction. More studies are needed to confirm the preliminary findings.

Finally, studies investigating the effects of Processing Instruction combined with output practice has brought to light some interesting but mixed results. These studies are also in the minority leaving a number of issues to be addressed. Among them towers the issue of investigating the effects of genuine structured input and
structured output practice. That is the effects of practice free from any explicit information regarding rules and processing strategies.

4.5 The Present Study: Motivation and research questions

As it has been discussed above, the overall results from classroom studies comparing Processing Instruction versus meaningful output-based instruction have shown that the output treatment, regardless the way it is delivered, is not successful in bringing similar effects to those produced by Processing Instruction and/or structured input practice. However, the only two studies found in the literature to investigate the English causative forms (Karacaer, 2005; Birjandi & Rahemi, 2009 reviewed in detail in section 5.3) comparing Processing Instruction with output-based instruction offered differential results. As it is discussed later in chapter five one possible reason for these conflicting results could be the target item itself. Another issue, previously encountered in Processing Instruction studies (e.g., Allen, 2000; Qin, 2008; Keating and Farley, 2008), could be the materials pack used. For example, when L2 learners listen to the following example (used in the Birjandi & Rahemi (2009) study): the teacher had the students do their homework, they will depend on the event probability that only the teacher can assign homework to the students. Hence, they will interpret the agent of the causative structure correctly without actually processing the structure. Therefore, there is a need for a study that investigates the English causative structure with carefully designed material packs for both structured input and structured output so that we can genuinely compare the effects of these two instructional treatments.

Moreover, research has proved that the structured input component is the main factor in the improved performance of learners. These instructional gains have been proved in both the interpretation and the production tasks. Nonetheless, no study so
far has used both discourse-level tasks in one single design. Also, there are preliminary results that reveal that Processing Instruction’s gains tend to be retained in the long-term. Intriguingly enough no study has investigated the possible longitudinal effects of structured input practice with both interpretation and production discourse-level tasks. Finally, no study has ever investigated the effects of structured input and structured output when delivered alone and in combination.

While research on combined Processing Instruction and output-based instruction has provided some interesting results, there are still a number of issues that have not been addressed:

a) Would a balanced combination of structured input and structured output practice have beneficial effects?

b) Would learners who receive structured input be able to interpret discourse and produce the English Causative form in less controlled situations?

c) Would any possible effects of instruction (found immediately and three weeks after instruction) be retained in the long run, i.e., up to six months after instruction?

The aim of the present study is threefold:

a) To compare and contrast three instructional treatments structured input only, structured output only, and a balanced combination of structured input and structured output on the acquisition of only one of the English causative form;

b) To measure the effects of structured input and structured output practice, alone and in combination, on both sentence and discourse-level interpretation and production tasks.
c) To examine whether the effects found at discourse-level can be retained (a) three weeks and (b) six months after instruction.

Based on the aims of the study, three specific questions were formulated:

RQ1: What are the immediate and short-term effects of structured input, structured output and a balanced combination of structured input and structured output, on the acquisition of the passive English causative form as measured with sentence-level interpretation and production tasks?

RQ2: What are the immediate and short-term effects of structured input, structured output and a balanced combination of structured input and structured output on the acquisition of the English causative form as measured with discourse-level interpretation and production tasks?

RQ3: What are the long-term effects of structured input, structured Output and a balanced combination of structured input and structured output on the acquisition of the passive English causative form as measured with discourse-level interpretation and production tasks? Are any possible immediate and/or short-term effects retained six months after instruction?
CHAPTER FIVE: DESIGN AND METHODOLOGY

5.1 Outline of the Design

To address the questions formulated in the previous section two different studies were conducted. The first is a parallel study of two classroom experiments which were carried out with a different population and investigated short-term and sentence and discourse-level effects (Benati and Batziou, 2017). The second is a study that measures the long-term effects of the instructional treatments on discourse-level interpretation and production tasks (Benati and Batziou, forthcoming).

The design and procedures were similar for the two parallel experiments in the first study. Treatment and Time were used as the independent variables. Interpretation and production tasks for the English causative form as the dependent variables. In both experiments the variable of Treatment was operationalised by providing participants with one of the three instructional treatments: structured input only (SI henceforward); structured output only (SO henceforward); a balanced combination of structured input and structured output (SI+SO henceforward) and a control group that did not receive any instruction on the English causative form and continued with their regular class (for experiment 1 only). Time was operationalised as the completion of pre-test and post-tests by the participants on different occasions. A pretest/posttest design was used. The treatment time and materials were identical for both experiments. The dependent variables in both experiments were used to measure both interpretation and production of the passive English causative form but on a different level as it is explained in detail in section 5.4. All participants signed an informed consent form at the beginning of the experiments.
In short, the two experiments were identical in design but differentiated only in three aspects: a) the assessment tasks implemented; b) the context (Foreign Language Learning vs Second Language Learning); and c) the characteristics of the participants. In the first experiment, the number of participants allowed for the creation of a control group which was not the case in the second experiment.

In the second study, Treatment and Time were used as the independent variables; and interpretation and production of the English causative form as the dependent variables. Treatment was operationalised by providing participants with one of the three instructional treatments (i.e., SI, SO and SI+SO) no control group was available in this study. However, the conditions allowed for a third posttest, which was designed to examine retention six months after instruction. At the final point of each experiment, participants were also asked to complete a questionnaire which checked for out-of-class exposure to the target feature. The outline of the design is also presented in Table 5.1.

<table>
<thead>
<tr>
<th>Study</th>
<th>Experiment 1</th>
<th>Experiment 2</th>
<th>Study 2 (Experiment 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1 week before treatment</strong></td>
<td>Informed consent Pretest</td>
<td>Informed consent Pretest</td>
<td>Informed consent Pretest</td>
</tr>
<tr>
<td><strong>Treatment: 3 hours</strong></td>
<td>SI/SO/SI+SO CONTROL</td>
<td>SI/SO/SI+SO</td>
<td>SI/SO/SI+SO</td>
</tr>
<tr>
<td><strong>Immediately after treatment</strong></td>
<td>Posttest1</td>
<td>Posttest1</td>
<td>Posttest1</td>
</tr>
<tr>
<td><strong>3 weeks after treatment</strong></td>
<td>Delayed posttest2 Questionnaire</td>
<td>Delayed posttest2 Questionnaire</td>
<td>Delayed posttest2</td>
</tr>
<tr>
<td><strong>6 months after Treatment</strong></td>
<td>-</td>
<td>-</td>
<td>Delayed posttest3 Questionnaire</td>
</tr>
</tbody>
</table>

Table 5.1 Outline of the Design

5.2 Participants

5.2.1 Participants: Study 1
As it was previously stated, for the first study two separate classroom experiments were carried out with participants of diverse characteristics who were learning English in different contexts. More specifically, participants in the first experiment were native speakers of Chinese enrolled in an early intermediate English course in a British university. Whereas, participants in the second experiment and the second study were school-age learners (aged 10-12) native speakers of Greek enrolled in an early intermediate English course in a private school in Greece. An important fact to be highlighted at this point is that the language proficiency level of the participants in all experiments was the same: they all were early intermediate learners of English.

5.2.1.1 Participants: Experiment 1

Participants were fifty-four Chinese native speakers enrolled in an English University programme for foreigner students. They were randomly assigned to four groups, by drawing names out of a box: a) SI (n=13); b) SO (n=15); c) a balanced combination of SI+SO (n=16) and d) a control group (n=10). They were exposed to fifteen hours of instruction per week and followed a highly communicative curriculum. All participants were informed beforehand about the aims, duration and purpose of the study. All subjects were informed that anonymity would be preserved in the data collection and the storage of the data. Participants who wished to participate in the study were asked to sign a consent form. The number of the participants in Experiment 1 was reduced to fifty-four from an original pool of sixty-four subjects after selection criteria were implemented. Participants who were excluded from the final data pool were allowed to participate in all parts of the experiment. However, their data were not included in the data analyses. More
specifically, the selection criteria for all participants in Experiment 1 were the following:

a) Only participants who scored less than 50% in the pretests and had no conscious out-of-class exposure to the target item were included;
b) Only participants who were native speakers of Chinese were included;
c) Only participants who participated in all the phases of the experiment were included;
d) Only early intermediate-level students of English were included;
e) Only participants who had signed the consent form were included in the final pool.

To sum up, all subjects were early learners of English, native speakers of Chinese aged 18+. They were randomly assigned to one of the three instructional groups (i.e., SI, SO and SI+SO) and a control group.

5.2.1.2 Participants: Experiment 2

Participants were thirty young learners (aged 10-12) enrolled in an early intermediate English course in a private language school in Greece. They were from three different classes of the same proficiency level. They were randomly assigned to three instructional groups, by drawing names out of a box: SI only ($n=10$); SO only ($n=10$); SI+SO ($n=10$). No control group was available for the second study. All subjects followed the same curriculum and used the same textbooks as they attended the same course and were taught following the same instructional approach, namely Presentation- Practice- Production (PPP). They were exposed to four hours of instruction per week, and they followed a communicative curriculum which aimed at the development of the four language skills (listening, speaking, reading and writing).
All participants had been students of the same language school and had received the same type of instruction for the last three years. They had never been formally exposed to the English Causative form before.

Because of the age of the participants, for both experiments conducted in Greece, a meeting was organised during which both parents and students were informed about the study and how data would be stored to secure anonymity. Only participants whose parents participated in the meeting, read the information sheet and signed the consent form were included in the final data pool. Therefore, the number of participants was reduced to thirty from an original pool of thirty-four after the inclusion criteria were implemented in the second experiment. Participants who failed to meet all requirements were excluded from the final data pool. More specifically, the inclusion criteria required participants to:

a) score less than 50% in the pretests and have no conscious out-of-class exposure to the target item at the end of the experiment;

b) be all native speakers of Greek;

c) participate in all experimental phases;

d) be early intermediate students of English;

e) have never been instructed and formally exposed to the English causative form;

f) have the consent form signed by their parents.

5.2.2 Participants: Study 2 (Experiment 3)

Participants were sixty-eight young learners (aged 10-12) enrolled in the same language school in Greece (also described in section 5.2.1.2). Subjects were from six different classes of similar proficiency level. They were randomly assigned to three
instructional groups, by drawing their names from a box: SI only \( (n=22) \); SO only \( (n=22) \); SI+SO \( (n=24) \). No control group was available for the second study. They followed the same curriculum, used the same textbooks and were taught following the same instructional approach. Details on their curriculum and instruction time are provided above (see section 5.2.1.2). None of the participants had ever been formally exposed to the English Causative form before.

Again, a meeting was organised to inform both parents and students about the study and how data would be stored to secure anonymity. Only participants whose parents participated in the meeting, read the information sheet and signed the consent form were included in the final data pool. Therefore, the number of participants included in the final data was reduced to sixty-eight from an original pool of eighty in the second study.

To sum up, all subjects were native speakers of Greek, aged 10-12, of early intermediate level who received the same type of instruction and had never been formally exposed to the English causative form before. Participants were randomly assigned to the three experimental groups. Due to practical difficulties, a control group was not available for neither of the experiments conducted in Greece.

5.2.3 Participants Information

5.2.3.1 Consent Form and Information Sheet

All participants or their parents (for Experiment 2 and Experiment 3 (study 2) only) had to sign a consent form to be included in the final data pool. A week before treatment participants and their parents (Experiment 2 and Experiment 3 (study 2)) attended a meeting where they were invited to participate in the present study. They
were informed about its purpose, the procedures and how data would be stored to secure anonymity. They were assured that all personal information which appeared on the consent form, the assessment tasks and the questionnaire would be kept secure and confidential. It was stressed that participation was strictly voluntary and would not affect their relationship with their teacher or the educational institution in any way. The consent forms they signed had been previously approved by the University of Greenwich Research Ethics Committee (see Appendix H and Appendix I for the information sheet and consent form provided to the participants and Appendix J for confirmation letter).

5.2.3.2. Questionnaire

A Language Exposure Questionnaire (see Appendix K) was completed by all participants at the end of the experiments. The main aim of the questionnaire was to obtain information about participants’ exposure to the English causative form outside of the classroom on a conscious level. Participants who were consciously exposed to the target item investigated were excluded from the final data pool. A secondary aim of the questionnaire was to weed out any participant whose L1 was not Chinese (experiment 1) or Greek (experiment 2 and study 2).

5.3 Target Feature

The rationale for choosing the English passive causative form, that is, the periphrastic causative structure ‘Noun Phrase+ Have +Noun Phrase+ Past participle’, as the target item of the present study is threefold. First, because research on the said target feature has brought to light conflicted results when compared to the Processing Instruction results reviewed in detail in the previous chapters. Second, because neither of the L1s investigated in this project possess this particular structure in their
grammar systems. The ultimate reason for choosing the English passive causative form is because it is affected by the First Noun Principle (FNP).

Although there is a vast number of Processing Instruction studies investigating the First Noun Principle, there are only three studies which have looked at the First Noun Principle when it affects the acquisition of the English causative forms. Two of them compared the relative effects of Processing Instruction to an output-based instruction, whereas the third compared Processing Instruction to other input-based types of practice on the acquisition of the English causative forms.

Karacaer (2005) investigated the relative effects of Processing Instruction and traditional instruction on the acquisition of the English causative forms. The structures she examined were the causatives structures formed with the verbs make, have and get as in the following examples: a) *John made Mary do the dishes*, b) *John had Mary do the dishes* and, c) *John got Mary to do the dishes*. In each structure, the causative form has a slightly different meaning the learners need to process. The processing problem involved was the First Noun Principle. A final pool of one hundred and twenty intermediate Turkish university students was assigned to three groups: a) one receiving Processing Instruction, b) the second receiving Traditional Instruction and c) a Control group. Instruction lasted for eighty minutes. Two assessment tasks -one interpretation (ten target items) and one production (five target items)- were developed. A pretest/ immediate posttest and delayed (five weeks) posttest design was adopted. The scores from the pre-test indicated that all groups were equivalent in their ability to interpret and produce the English causative structures under investigation. The mean scores on the immediate posttest for the interpretation task showed that all groups improved after the instructional period. The mean scores on the delayed posttest showed that the Processing Instruction group decreased slightly, whereas the
Traditional Instruction group maintained its gains five weeks after instruction. The control group improved slightly from pretest to posttest (3.05-4.27) and more from posttest to the delayed posttest (4.27-6.32). The statistical analyses revealed a significant difference with the Processing Instruction group performing better than the traditional Instruction group on the immediate posttest, but no significant difference was found between groups on the delayed posttest. The two instructional groups performed significantly better than the control group. The mean scores on the production task indicated a significant improvement only for the Processing Instruction and the traditional instruction group; the control group improved slightly. The mean scores on the delayed post-test reported that the Processing Instruction group maintained its gains, the traditional instruction group lost some of its gains whereas the control group improved slightly. The statistical analyses revealed no significant difference between the Processing Instruction and the traditional instruction group, whereas both groups outperformed the control group. Overall, the findings from this study suggest that both Processing Instruction and traditional instruction made significant gains on both their ability to interpret and produce the English causative forms. Moreover, the control group also made gains from pretest to immediate posttest and even more from immediate to delayed posttest. These results do not fall in line with findings found in the literature so far.

Birjandi and Rahemi (2009) investigated the effects of Processing Instruction, an output based instruction (OI) and Explicit information (EI) only instruction on learners’ ability to interpret and produce the English causative forms. The structures investigated were the English causatives formed with the verbs: *have* and *get* both in active and passive forms (active: Mary *had* John *cook* dinner, or Mary *got* John *to cook the dinner*, passive: Mary *had the dinner cooked*, or Mary *got her purse stolen*).
A hundred and fifty-one Iranian university students at pre-intermediate level (as measured by the written part only of Preliminary English Test (PET- Cambridge)) participated in this study. They were assigned to four groups: a) one receiving Processing Instruction; b) one receiving output instruction; c) one receiving explicit information only; and, d) one receiving no instruction on the target structures. Instruction lasted two weeks and included the practice of other grammatical features (i.e., the simple, progressive, the perfect modes of present and past tenses). Assessment tasks were at sentence-level. The researchers developed two tasks. One translation activity (12 items) that served as the interpretation task and a paraphrasing activity (8 items) that served as the production task. A pretest, immediate posttest and a delayed (one month) post-test design was adopted. The mean scores of the pre-tests for both interpretation and production tasks indicated little or no previous knowledge of the target structures. The mean scores on the immediate posttest for the interpretation task showed that the three groups (Processing Instruction, output instruction and explicit information) improved after the two-week instructional period. The scores on the delayed post-test indicated a decline for all groups by the delayed post-test. The statistical analyses revealed that the Processing Instruction and the output instruction groups improved equally from pre-test to post-test 1 and both groups outperformed the explicit information group. Albeit the decline revealed on the delayed post-tests, there was no statistical difference between the scores from pre-test to post-test 2. That is, the instructional gains made by the three instructional groups were retained over time. The control group indicated some slight improvement, but this was not statistically significant over time. The mean scores on the immediate post-test for the production task showed an increase for the three instructional groups. The statistical analyses revealed that the output instruction group
outperformed the Processing Instruction and the explicit information group. No statistical difference was found between the Processing Instruction and the explicit information group. All instructional groups outperformed the control group. The delayed post-tests indicated a slight decline in the groups’ performance, but this was still significantly higher than their performance in the pretests. That is, instructional gains were equally retained over time. Again, the control group indicated some slight improvement, but this was not statistically significant over time.

Jalali and Jafarigohar (2014) conducted a study to investigate the relative effects of three input-based types of instruction: Processing Instruction; Textual Input Enhancement (TIE); and Consciousness-Raising (C-R) on the acquisition of the English causative forms (affected by the First Noun Principle). The structures investigated were the active structures formed with the verbs *have* and *get* (e.g., *Mary had/let/made John cook dinner* and *Mary got/helped John to cook dinner*). One hundred and five Iranian university students at pre-intermediate level (as measured by the Preliminary English Test (PET- Cambridge) participated in this study. Four intact classes were randomly assigned to four experimental groups. The first received Processing Instruction; the second received Textual Input Enhancement; the third received Consciousness- Raising; and the fourth received no instruction on the English causatives and served as Control group. Instruction lasted four sessions spanned over four weeks’ time. One interpretation task (twenty target items) and one production task (ten target items) were developed and used in a pretest/ immediate and delayed posttest design. Also, a timed grammaticality judgement test (twenty sentences) was administered to measure intake of the structures under investigation. The mean scores on all pre-tests (interpretation, production and grammaticality judgement) showed that all participants had equally little or no knowledge of the
English causatives. The mean scores on the immediate posttest for the interpretation task showed an improvement for all three instructional treatments. The statistical analyses indicated that the Processing Instruction group outperformed the Textual Input Enhancement and Consciousness -Raising group. The gains made from pre-test to immediate posttest were retained by the Processing Instruction and the Consciousness -Raising group but not by the Textual Input Enhancement group one month later. The control group made no statistically significant improvement on the interpretation task. The mean scores on the immediate posttest for the production task showed an improvement for only the two instructional groups. The statistical analyses revealed that the Processing Instruction group outperformed the Consciousness-Raising and the Textual Input Enhancement group. No statistical difference was found between the Textual Input Enhancement and the control group. The delayed posttests indicated a decline in Consciousness-Raising group’s performance. That is, instructional gains were retained over time only by the Processing Instruction group. Overall, results are congruent with those obtained by the majority of Processing Instruction studies as they indicate that Processing Instruction is an instructional treatment that can help learners interpret and produce correctly structures that are affected by the First Noun Principle. These results are maintained over one-month time. Regarding the grammaticality judgement test, results revealed that all instructional groups had a positive effect on improving intake of the causative structures. The gains were not equal. Again, the Processing Instruction group outperformed the other two groups. Table 5.2 summarises these studies.

<table>
<thead>
<tr>
<th>Time of instruction</th>
<th>Target structures instructed</th>
<th>Other features instructed</th>
<th>Interpretation tasks: Items and results</th>
<th>Production tasks: Items and results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karacaer (2005)</td>
<td>80 minutes</td>
<td>3 active structures with <em>have</em></td>
<td><em>10 target items</em> PI&gt;TI&gt;Control (post1)</td>
<td><em>5 target items</em> PI=TI&gt;Control (post1)</td>
</tr>
</tbody>
</table>
Table 5.2. Summary of studies investigating the English causative forms

<table>
<thead>
<tr>
<th>Study</th>
<th>Duration</th>
<th>Treatment</th>
<th>Target Items</th>
<th>PI=TI&gt;Control (post2: 5 weeks)</th>
<th>PI=TI&gt;Control (post2: 5 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birjandi &amp; Rahemi (2009)</td>
<td>2 weeks</td>
<td>2 active</td>
<td>12 target</td>
<td>Pl=OI&gt;El&gt;Control (post1)</td>
<td>Pl=OI&gt;El&gt;Control (post1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>structures with have and get</td>
<td>Item(s)</td>
<td>Pl=OI&gt;El&gt;Control (post2: 1 month)</td>
<td>Pl=OI&gt;El&gt;Control (post2: 1 month)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 passive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>structures with have and get</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jafarigohar and Jalali (2014) 4 sessions spanned over 4 weeks 2 active structures with have, let, help, make and get 20 target items PI>C-R>TIE>C (post1) PI>C-R>TIE=C. (post2: 1 month) G.J test: PI>C-R=TIE>C 10 target items PI>C-R>TIE=C (post1) PI>C-R=TIE =C (post2: 1 month)

To sum up, the three studies reviewed in this section brought to light conflicting results. Both the studies that compare Processing Instruction with an Output type of practice provide us with results that are not in line with the previous empirical findings reviewed in detail in section 4.2.

One possible reason could be the target item per se. From a developmental point of view, the English causative might be a complex phenomenon, and even if it is affected by the First Noun Principle (and therefore can be teachable through Processing Instruction), it might not be susceptible to instruction at intermediate stages of acquisition. Hence, if learners are not developmentally ready, instruction cannot affect any substantial changes within their development system which in the case of Processing Instruction would mirror on their production performance.

A second reason is the materials used in these studies. For the second study, materials should be under closer inspection since some items in the Processing Instruction materials do not help L2 learners to circumvent the First Noun Principle. This issue is also evident in the example provided by the researchers ‘the teacher had
me work hard’ (Birjandi & Rahemi, 2009:6) as this sentence is affected by the event probability and contextual constraints strategies.

A third reason could be the significant difference in the design of the three studies, especially when compared to previous Processing Instruction studies. Firstly, the time of instruction in each study is significantly different from the other spanning from eighty minutes to two or four weeks. Typically, the instruction span in Processing Instruction studies usually lasts about three hours.

A fourth reason is that the instructed items seem to vary significantly in all three studies (see Table 4.). Taking into consideration the target items used in the assessment tasks of the two first studies it seems that for the first, data for three different structures were collected with tasks that included only ten interpretation target items and five production target items, that is 3.3 interpretation and 1.6 production items corresponding to each structure. For the second study, four different structures were assessed with only twelve and eight interpretation and production items respectively; that is, three interpretation and two production items should have assessed each structure.

A final reason is the use of assessment tasks such as judgment tasks that do not measure language processing, and they are not appropriate to be used as a depended variable to measure the effects of Processing Instruction.

The decision to use the English causative forms was dictated by the fact that neither Chinese nor Greek (the L1s of the participants in this study) possess a structure which corresponds to the passive English causative. Albeit there is a structure to correspond to the active English causative form, the same does not apply
when it comes to the target item investigated in this study. Instead, it is very common to use an active verb to convey a passive causative meaning in both languages.

In Chinese, causation is expressed mainly by the following structure: \([\text{NP1 (causer)} + \text{VP1} + \text{NP2 (causee)} + \text{VP2}]\). The verbs that can be used in \(\text{VP1}\) are divided into two sets according to whether or not their meaning is confined to causation (1st set) or not (2nd set) as reported in He (2014). The first set includes the following verbs: shi (使, cause), rang (让, make), ling (令, cause), and jiao (叫, enable).

The second set includes less confined to causation verbs and is divided into the following sub-categories:

a) forcing: poshi (迫使, force), cushi (促使, impel) and cuicu (催促, urge);

b) ordering: mingling (命令, order), fenfu (吩咐, instruct) and dafa (打发, dispatch);

c) leading: lingdao (领导, lead), zuzhi (组织, organise) and zhaoji (召集, convene);

d) persuading: Quan (劝, persuade), quanshuo (劝说, persuade) and quangao (劝告, advise);

e) inviting: qing (请, request), yaoqing (邀请, invite) and qingqiu (请求, request);

f) encouraging: guli (鼓励, encourage), guwu (鼓舞, encourage) and haozhao (召, appeal);

g) allowing: yunxu (允许, allow), rongxu (容许, allow) and daying (答应, permit) (He, 2014:48).
Furthermore, Thepkanjana & Uehara (2015) report another structure in Mandarin Chinese which expresses causation formed with the verb gěi [NP1 + gěi + NP2 + VP], as exemplified in (1):

(1) Zhāngsān gěi Lìsì kàn

Zhangsan give Lisi look


All the above examples found in the literature are plausible causative structures in Chinese and all have a structure similar to the English causative structure [NP1 + have/get/let etc. + NP2 + VP+ (NP3)], as exemplified in (2), (3) and (4):

(2) John had Mary wash the dishes
(3) John got Mary to wash the dishes
(4) John let Mary wash the dishes

In all the above structures, the causer and the causee are present in the utterance whereas in the target item investigated in the present study, i.e., [NP1+Have+NP2+ VP (past participle)] the causee is not present, as it is shown in the following example: *John had his telephone line installed.* Liming (1990) reports that there is no corresponding structure in Chinese.

“What was particularly worthy of note is that in the journal entry quoted above, I still was not aware that it was not "install the telephone", but "have the telephone installed" that I should be struggling for. […] I think my failure to produce this correct form was due to the fact that the Chinese equivalent for "install the telephone" also implies "have the telephone installed" in English (in fact there is no corresponding structure in Chinese for "have ... installed").” (Liming, 1990:16)

In Greek causation -discussed here as the syntactical correlation of a causer and a causee- can be expressed in two ways. One would be with structures similar to
the ones discussed above for Chinese with a list of similar verbs to be used in said structures. Their English equivalent would be the construction [NP1 + have/get/let etc. + NP2 + VP+ (NP3)], its Greek equivalent are exemplified in (5) and (6):

(5) O Yiorgos zitise apo tin Maria na plini ta piata

*The Yiorgos asked from the Maria to wash the dishes

Yiorgos asked Maria to wash the dishes

(6) O Yiorgos evale/ ekane/ epise tin Maria na plini ta piata

*The Yiorgos put/ made/ convinced the Maria to wash the dishes

Yiorgos had / made/ got Maria (to) wash the dishes

The other would be to use a verb either active or reflexive to express causative meaning. However, in this case meaning is ambiguous, it is not clear whom the causee is, as exemplified in (7) and (8) the Greek utterances can be construed in two ways:

(7) Evapsa to domatio mou xtes (active verb)

*painted the room my yesterday

I painted my room yesterday or

I had my room painted

(8) I Maria koureftike to proi (reflexive)

*The Maria cut (herself) the hair this morning

Maria cut her hair this morning or

Maria had her hair cut this morning

The main reason for choosing this structure is that English causative is affected by the First Noun Principle (VanPatten, 1996, 2002, 2004). According to this principle, as it was explicated previously (see chapter 2), L2 learners tend to identify
the first noun or pronoun they encounter in an utterance as the agent. For example, in the sentence “Lina had her beautiful dress mended”, early learners would wrongly assign the first noun encountered in this sentence as the agent of the action, and thus they would process Lina as the person who actually mended the dress. Applying this processing strategy would cause misinterpretations, which in turn, cause delay in the acquisition of the specific word order pattern and consequently of the target feature. Furthermore, as Benati (2005) has previously argued learners’ comprehension could also be hindered by another principle, the Primacy of Content Words Principle. More specifically, in the above example the presence of “Lina”, a content word, and the absence of the actual agent of the action, that is, “the person who in effect mended the dress” falsely leads learners to rely on the existing noun to get meaning. Because L2 learners adopt these default strategies to process input containing the target item in question, the primary goal of structured input practice would be to aid learners to parse the English causative form correctly and appropriately. The structured input activities would help learners assign the correct semantic and syntactic role to the nouns or pronouns they encounter in initial position when processing an aural or written sentence that contains the passive English causative form. Previous research has provided evidence for the positive effects of structured input practice in altering the First Noun Principle and helping learners to correctly interpret and produce sentences containing the target feature (VanPatten and Cadierno, 1993; VanPatten and Oikkenon, 1996; VanPatten and Wong, 2004; Morgan-Short and Bowden, 2006).
5.4 Methodology

5.4.1 Procedures

As it was outlined in section 5.1, this project comprises two main studies. The first consisted of two parallel classroom experiments which sought for sentence and discourse-level short-term effects. This study also uses secondary variables like age and L1. The second study (Experiment 3) was a classroom experiment that focused on delayed effects of instruction as measured with discourse-level task. An overview of the procedures followed in all studies is presented in tables 5.3 and 5.4.

Firstly, participants and the parents of the young participants were informed about the study, after being fully informed, all of whom wished to participate in the study were asked to sign a consent form, as it was explained in section 5.2. For Experiment 1 fifty-four participants were randomly assigned to four groups: SI, SO, a balanced combination of SI+SO and the control group. For Experiment 2 thirty-four participants were randomly assigned (see above) to the three instructional groups: SI, SO and SI+SO. For Study 2 sixty-eight subjects were randomly assigned to the three instructional groups: SI, SO and SI+SO. All participants were selected based on the criteria described in detail in the section 5.2.1.

A pre/posttests design was used in all experiments. The assessment tasks tested participants’ ability to interpret and produce the English causative form. The tests used in Experiment 1 included: a) a sentence-level interpretation task, b) a sentence-level production task and c) a discourse-level interpretation task. In Experiment 2 and Study 2 focus was only on discourse. Thus, the tests implemented included: a) a discourse-level interpretation and b) a discourse-level production task. The pretests were administered a week before the beginning of the experiments.
Participants who scored more than 50% of the maximum score in the pretest were excluded from the final pool. Instruction lasted three hours over two consecutive days. For the first experiment, the control group received no instruction on the target item. Instead, they continued with their regular class which did not cover any form of the English causative.

In all experiments, the participants’ regular instructors acted as facilitators during the experiment. The instructors were trained on how to use the instructional materials and assessment tools beforehand. They were also instructed not to give any grammar explanation or rule regarding the English causative form. However, they provided clear answers to any procedural questions to ensure that participants knew exactly what to do in all phases of the study (treatment and assessment). It was made clear to instructors that feedback provision should be kept to minimum, that is, participants should only be informed whether their answers were correct or not without being provided with any further explanation during treatment. Instructors fully understood that they should not make any comments on the structure of the target feature at any point of the experiment. Finally, they were kindly requested to remind participants to perform their best in all phases of the study.

In Study 1, an immediate post-test (Post1) was administered immediately after instruction, and a delayed post-test (Post2) was administered three weeks after instruction. At this point, participants were asked to complete a language exposure questionnaire (see Appendix K).

As explained above, Study 2 (Experiment 3) followed precisely the same procedure with the addition of a delayed post-test administered six months after instruction (see table 5.4). The curriculum of the participants was carefully controlled so that they did
not have any further instruction or practice with English causative forms during the six-month period. This was achieved by stipulating with the School that the target feature was not to be taught during this time. The only exception, the data collection on the third week after instruction (delayed post-test 2) when all groups were asked to complete two tasks using the English causative form. Apart from that, learners continued their classes normally without any formal exposure to the target item. Six months after instruction subjects were administered the last delayed posttest. To attest for any out-of-class exposure to the English causative forms a questionnaire was elaborated and handed out to the participants to fill in at the end of Study 2 (Experiment 3) (see Appendix K).

<table>
<thead>
<tr>
<th>STUDY 1 TIME</th>
<th>TREATMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SI</td>
</tr>
<tr>
<td>One week before instruction</td>
<td><strong>PRETEST</strong></td>
</tr>
<tr>
<td></td>
<td>• Sentence-level interpretation (1st Experiment only)</td>
</tr>
<tr>
<td></td>
<td>• Sentence-level production (1st Experiment only)</td>
</tr>
<tr>
<td></td>
<td>• Discourse-level interpretation (both Experiments)</td>
</tr>
<tr>
<td></td>
<td>• Discourse-level production (2nd Experiment only)</td>
</tr>
<tr>
<td>1st day</td>
<td>SI Activities 1,5 hours</td>
</tr>
<tr>
<td>2nd day</td>
<td>SI Activities 1,5 hour BREAK</td>
</tr>
<tr>
<td></td>
<td><strong>IMMEDIATE POSTTEST (POST 1)</strong></td>
</tr>
<tr>
<td></td>
<td>• Sentence-level interpretation (1st Experiment only)</td>
</tr>
<tr>
<td></td>
<td>• Sentence-level production (1st Experiment only)</td>
</tr>
<tr>
<td></td>
<td>• Discourse-level interpretation (both Experiments)</td>
</tr>
<tr>
<td></td>
<td>• Discourse-level production (2nd Experiment only)</td>
</tr>
<tr>
<td>Three weeks after instruction</td>
<td><strong>DELAYED POSTTEST (POST 2)</strong></td>
</tr>
<tr>
<td></td>
<td>• Sentence-level interpretation (1st Experiment only)</td>
</tr>
<tr>
<td></td>
<td>• Sentence-level production (1st Experiment only)</td>
</tr>
<tr>
<td></td>
<td>• Discourse-level interpretation (both Experiments)</td>
</tr>
<tr>
<td></td>
<td>• Discourse-level production (2nd Experiment only)</td>
</tr>
<tr>
<td></td>
<td>• Questionnaire (both Experiments)</td>
</tr>
</tbody>
</table>

Table 5.3. Overview of the Procedures followed in Study 1.
<table>
<thead>
<tr>
<th>STUDY 2 TIME</th>
<th>TREATMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SI</td>
</tr>
<tr>
<td>One week before instruction</td>
<td>PRETEST</td>
</tr>
<tr>
<td></td>
<td>- Discourse-level interpretation task</td>
</tr>
<tr>
<td></td>
<td>- Discourse-level production task</td>
</tr>
<tr>
<td>1st day</td>
<td>SI Activities 1.5 hours</td>
</tr>
<tr>
<td>2nd day</td>
<td>SI Activities 1.5 hours</td>
</tr>
<tr>
<td></td>
<td>BREAK</td>
</tr>
<tr>
<td>IMMEDIATE POSTTEST (POST 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Discourse-level interpretation task</td>
</tr>
<tr>
<td></td>
<td>- Discourse-level production task (written mode)</td>
</tr>
<tr>
<td>Three weeks after instruction</td>
<td>DELAYED POSTTEST (POST 2)</td>
</tr>
<tr>
<td></td>
<td>- Discourse-level interpretation task</td>
</tr>
<tr>
<td></td>
<td>- Discourse-level production task</td>
</tr>
<tr>
<td>Six months after instruction</td>
<td>DELAYED POSTTEST (POST 3)</td>
</tr>
<tr>
<td></td>
<td>- Discourse-level interpretation task</td>
</tr>
<tr>
<td></td>
<td>- Discourse-level production task</td>
</tr>
<tr>
<td></td>
<td>- Questionnaire</td>
</tr>
</tbody>
</table>

Table 5.4. Overview of the Procedures followed in Study 2 (Experiment 3)

5.4.2 Teaching Materials

For all experiments, three sets of materials were developed. Firstly, two experienced EFL teachers and two experienced scholars reviewed two sets of the materials (structured input only and structured output only). The two packs were then piloted on two intermediate English classes in Greece. The aim of this procedure was threefold: a) to check adequacy of vocabulary items; b) to examine the quality, clarity and relevance of the pictorial items; and, c) to check and balance the duration of the practised items. At the end of the piloting, some lexical items were replaced with more familiar ones, two pictures were replaced, the ambiguous sentences were omitted, and duration and practised items were balanced. Next, the third set of materials (Structured input + Structured Output) was developed from a proportionate number of activities taken from the two piloted sets.
After the review and piloting all three sets were balanced in terms of a) vocabulary (high frequency and familiar items) and visual used; b) activity types; c) number of target items practised (forty target items); and, d) duration (three hours for all groups).

Structured input and structured output activities were developed carefully according to the guidelines provided by Lee and VanPatten (1995). Forty target items were chosen in the present study based on two tenets of previous research. First, on findings revealed by Qin (2008) who used forty-one items (one third fewer items than VanPatten and Cadierno, 1993) to aid learners to circumvent the First Noun Principle. And, second, on findings by Fernández (2008) which indicate that learners need a minimum of twenty target items to begin to process and interpret the target item in the input language. That way the group receiving the balanced combination of structured input and structured output was provided with the minimum required input practice (twenty items) before they started output practice (another twenty items). The activities were provided to learners on worksheets. No explicit information or any other kind of explanation about the target linguistic item was presented to the participants. Moreover, the feedback provided to the participants was kept to minimum, that is, they were only informed whether their responses were correct or not without being provided with any further explanation. However, they were reassured that they could get any additional feedback needed at the end of the experiment.

5.4.2.1 Structured input materials

The structured input treatment contained in total forty-two target items in ten activities, which consisted of eight referential and two affective activities (see
Appendix A) using both aural and written input. More specifically, all activities were structured in a way so that learners relied on the causative structure to understand the meaning. Additionally, the activities were carefully designed so that they helped learners to circumvent the First Noun Principle. Language input was carefully chosen to avoid learners relying on event probabilities or context to process the English causative forms correctly. During structured input practice learners were never asked to produce the target grammar feature. The structured input activities were developed according to the guidelines provided by Lee and VanPatten, (1995) and Wong (2004). They are only synoptically presented below as they were fully explained in chapter three:

1. Present one thing at a time;
2. Keep meaning in focus;
3. Move from sentences to connected discourse;
4. Use both oral and written input;
5. Have the learner do something with the input, and,
6. Keep the learner’s processing strategies in mind.

As it was previously stated, structured input activities are of two types, referential and affective. The referential activities used were eight, and they provided both aural and written input. More specifically, the referential activities required learners to parse correctly each sentence they read or heard in order to assign the agent. During this phase, they were asked to identify the person who was performing the action. This was achieved either by having the participants (a) write the name of the agent or opt for “someone else” or (c) choose the correct answer between two options given. Learners had to match a sentence to the appropriate picture from the two options provided, based on who performed the action in the input. If participants were not sure, they could tick the ‘not sure’ option. All activities had a right or wrong
answer. Following are some examples of referential activities² (see figures 5.1, 5.2 and 5.3):

**Example of a written SI Referential activity**
Read the following statements carefully. Then, write the name of the person who performed the action or tick “someone else” if the person who actually performed the action is not mentioned in the sentence.

1) Mark had his shirts washed.
2) Emma had a salad for lunch.
...

<table>
<thead>
<tr>
<th>Name</th>
<th>Someone else</th>
<th>Not Sure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Who washed the shirts?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Who ate a salad?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
...

Figure 5.1. Example of a written input referential activity utilized in the SI (Full details of the SI activities are provided in Appendix A)

**Example of an aural SI referential activity**
Listen to the sentences and answer the questions you can opt for (c) if you are not sure. Pay careful attention to the structure of each sentence in order to understand who is actually performing the action:

1) Who mended the dress?
   a) Jane   b) someone else   c)___
2) Who repaired the car?
   a) Penny   b) someone else   c)___
...

**Instructor’s script**
1) Jane had her dress mended last Monday
2) Penny repaired the car herself...

Figure 5.2. Example of an aural input referential activity utilized in the SI (Full details of the SI activities are provided in Appendix A)

**Example of SI referential activity with visuals**
Match each picture below to the statement that conveys the same meaning. Pay close attention to the structure of the verb “has” in order to understand who is actually performing the action.

1. a) Sandra has her hair done every week.  
   b) Sandra does her hair every week.

Figure 5.3. Example of a written input referential activity with visuals utilised in the SI (Full details of the SI activities are provided in Appendix A).

² Focus on form is a generic term for any deliberate attempt to draw learners’ attention to formal properties of the target language in the input. Structured Input is a type of focus on form instruction.
Two affective activities were developed for the present study. Unlike referential activities, there is no right or wrong answer for the affective activities. The idea was for participants to process meaning and form while at the same time they interacted with real-world situations. An example of an affective activity is provided in figure 5.4.

Example of an affective activity

How well do you know your instructor?

Step 1. Following are some things your instructor might have done last week and in the past. Try to see if you can guess correctly.

During last week my instructor...

1. had a big party at home to celebrate her/his birthday
2. had the students' tests corrected, she/he was too busy to do it her/himself...

Step 2 A volunteer will read the statements from step 1 to the rest of the class. Indicate whether you agree or disagree with each statement. In the end, your instructor will tell you and the class if you are right.

Step 3. Now that you know what your instructor did and what she/he had done for him/her. Find at least three things she/he likes doing on her/his own and three things that she/he would definitely ask someone else to do for him/her.

Limited feedback was provided to the participants during structured input practice. More specifically, regarding referential activities, the feedback made available to them consisted in just informing learners whether their responses were correct or wrong without being provided with any further information. Most importantly, no explanation regarding the English causative form or comments on the structure of the sentences containing the target form was supplied by the instructors.

5.4.2.2 Structured Output materials

Six structured output activities were developed for the present study (see full details in Appendix B). A sum of forty target items was initially aimed to be used. However, because of the nature of the structured output activities, there were instances when participants produced few more target items. Nonetheless, these were
no more than four in total which permits the claim that a balanced number of target items were used in all groups. Finally, instruction for the structured output group lasted three hours, similarly to the other groups.

All structured output activities were developed following closely the guidelines provided by Lee and VanPatten (1995) apart from the sixth guideline (see below), for validity reasons (i.e., homogeneity in the participants’ pool). The reader is reminded that one of the inclusion criteria was that participants should not have previous knowledge of the target item (see section 3.1). However, the participants were provided with an example of the target item at the beginning so that they could understand how to perform each activity. The guidelines for structured output activities are synoptically presented here as they have been in detail explicated in chapter 3:

1. Present one thing at a time;
2. Keep meaning in focus;
3. Move from sentences to connected discourse;
4. Use both oral and written output;
5. Others must respond to the content of the output;
6. The learner must have some knowledge of the form or structure.

All activities comprised of four steps which were designed to push learners to produce both oral and written output. An example including the English causative structure was provided in all steps and participants were required to produce it within a meaningful and communicative setting, no mechanical practice was included. Structured output activities required participants to exchange previously unknown information and also access the English causative in order to express meaning. An example of a structured output activity is provided in figure 5.5.

Example of a structured output activity
Which house chores would you definitely avoid?
Step 1. Indicate which of the following activities you did **yourself** and which you **asked someone else** to do for you last week.

*Example:* “I tidied my room last week, but I had my desk dusted by my brother because I’m allergic to dust.”

<table>
<thead>
<tr>
<th>Chores</th>
<th>Done by myself</th>
<th>Have it done by someone else</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean the windows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mop the floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do the dishes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Another five chores follow.

**Step 2.** Using the information from step 1, create a series of questions (maximum 5) to ask your classmate during an interview.

*Example:* “Did you tidy your room yourself or did you have it tidied by someone else last week?”

**Step 3.** Interview your classmate. Be sure to write down your classmate’s response because you will need them later.

**Step 4.** Prepare a set of statements (maximum 5) in which you compare the chores you ask someone else to do for you with the chores your classmate asks someone else to do for him/her using the ideas from step 1,2,3. You will present your results to the class, and after you have received feedback from other classmates, you will draw some conclusion about which chores are the least popular among the students of your class.

Figure 5.5. Example of a SO activity (Full details of SO activities are provided in Appendix B)

Feedback was provided to the participants of the structured output group, but it was kept to a minimum. It was mainly in the form of positive feedback provided by the instructor when correct output was produced by the participants. Also, where needed, participants were informed whether or not their answers were correct. No other type of feedback was provided to the participants.

5.4.2.3 **Structured input and structured output materials**

Eight activities were utilised in the materials of the combined practice group.

Five referential structured input activities, which provided visuals, written and aural input, and three structured output activities, which provided the opportunities for producing both written and oral output, were combined in a balanced fashion (see Appendix C for full details). Forty-two target items were provided as follows: The structured input activities included twenty target items, and the structured output
activities included maximum twenty-two target items; more specifically, the target items participants were pushed to produce oscillated from twenty to twenty-two. The structured input activities included both aural and written input as well as visuals; respectively, the structured output activities pushed participants to produce both written and oral output. In total, instruction lasted three hours similarly to the other two treatment groups.

Following suggestions made in previous research (Cadierno, 1995; Benati, 2005; Toth, 2006) instruction began with structured input practice and structured output practice ensued. With this, it was intended to, firstly, push learners away from the First Noun Principle and help them to process input correctly. Structured output practice intended to help learners to produce the English causative in a meaningful context. Feedback was provided, but it was kept to a minimum, exactly as it was the case for the structured input and structured output only groups.

The reader is reminded that during the study the participants in the control group (Experiment 1) did not receive any instruction of the English causative form. They followed their normal language class.

To conclude, particular caution was taken during both the development and implementation of the materials so that each group would receive the type of practice it was assigned for. Most importantly, the structured input group received instruction that focused on aiding learners to circumvent the First Noun Principle and process correctly input containing the English causative form. On the other hand, the structured output group focused on producing the target linguistic structure in meaningful, communicative contexts. Structured output practice completely lacked focus on default processing strategies. Only the combined group received a balanced
combination of both treatments focusing both on accurate input processing and meaningful output production of the target item investigated.

5.4.3 Assessment tasks

Two sentence-level, interpretation and production tasks and one discourse-level interpretation task used in Experiment 1. Two discourse-level tasks, one interpretation (same as in Experiment 1) and one production, were used in Experiment 2. For the second study (Experiment 3), the focus was placed only on discourse-level tasks and long-term effects; hence, the same measurements as in Experiment 2 (Study 1) were implemented.

To validate the appropriateness of the assessment tools all tests were reviewed by two experienced scholars and two experienced EFL teachers. Special issues brought into focus was the wording of test instructions, the relevance of drawing and text, clarity of meaning in texts and scoring procedures. Samples of the reviewed tests were piloted on two intermediate classes of English in Greece. After the review and piloting any sentences with ambiguous meaning were rephrased so that they conveyed a clear message. The name of the character depicted in specific drawings, for which students found difficulty in identifying it, was added next to the picture. Finally, this procedure also contributed on the final time allotted for the completion of the assessment tasks.

The following sections describe, first, the sentence-level interpretation and production tasks used only in Experiment 1; and then, present the discourse-level interpretation (used in all experiments) and production tasks (used in Experiment 2 and Experiment 3- Study 2).
5.4.3.1. Sentence-level Assessment Tasks

Two sentence-level tasks, one to test interpretation and one to test production competence were developed for Experiment 1. Both were time constraint and meaningful in nature.

5.4.3.1.1 Sentence-level Interpretation Tasks

The interpretation task consisted of twenty sentences, ten distracters and ten requiring the participants to interpret the target item correctly. The first three distracters were used as warm-up sentences in order to make sure that the participants fully comprehended instructions to the test. The sentences were read to the participants at a normal pace and only once so that ‘real-time’ reaction to the aural stimulus was measured. As the participants listened to the sentences, they had to choose who was the agent of the action performed by writing the name of the person if it was uttered or opt for ‘someone else’ if the name of the agent was not provided in the sentence. There was also a third ‘Not Sure’ option for the participants to choose when they could not assign a role of agent in the utterances they heard. An example of a sentence-level interpretation task is provided in figure 5.6 (full details are provided in Appendix D).

Example of a Sentence-level Interpretation Task (Version A)

Instructions
For each sentence, write who performed the action described. You must write either the NAME of the agent (if it’s mentioned), or tick Someone Else (if the name of the agent is not mentioned) you could also opt for “NOT SURE” if you can’t really tell who the agent is.

Test A (Instructor’s script)

Warm up (3 first items)
1) Bill borrowed a book from Peter.
2) Mary called a taxi for Emma.
3) Steven had baked a cake for his birthday.
4) Peter had the garage cleaned before the trip. (target item)

Test A (Participants’ answering sheet) (VERSION A)

NAME:__________

(Instructions for the test appeared here)

<table>
<thead>
<tr>
<th>NAME</th>
<th>Someone else</th>
<th>NOT SURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.4.3.1.2 Sentence-level Production Task

One sentence-level production task was developed for the first experiment. It consisted of ten fill-in-the-gaps sentences seven requiring the participants to produce the English causative and three distracters. More specifically, a short, meaningful script was provided to the participants, which they had to complete by filling in a gap in the second sentence. The beginning of the second sentence and some prompts were given to them, so their main goal was to complete the second sentence while maintaining the meaning conveying by the script. No warm-up sentences were needed for this task since participants were familiarised with it. However, precise instructions were provided at the beginning of the task and any further required clarifications were given to the participants by the instructor. Five minutes was the time allotted for the completion of the sentence-level production task. An example of a sentence-level production task, which presents a target item and a distracter phrase, is provided in figure 10; however, full details are provided in Appendix E.

| 1) Who borrowed a book? | __________ | __________ | __________ |
| 2) Who called a taxi?   | __________ | __________ | __________ |
| 3) Who baked a cake?    | __________ | __________ | __________ |
| 4) Who cleaned the garage? | __________ | __________ | __________ |

8 distracters and 8 target items followed in the task

Figure 5.6. Example of sentence-level interpretation task (full details are provided in Appendix D).

**Example of a sentence-level production task (Version A)**

(INSTRUCTIONS)
Complete the second phrase in each of the following scripts so that it has exactly the same meaning as the previous one. You will have to use the words in the parentheses to make any necessary changes but NOT just them. DO NOT erase any word.
1) Mark never tidies his room. He always asks someone else to tidy it for him. Yesterday, again, Mark had ____________________________________ . (tidy, room) (target item)
2) Mrs. Brown was not feeling well. Her husband took her to the hospital. The doctor took her blood pressure before that he had__________________________________ . (examine, heart) (distracter)

Figure 5.7. Example of a sentence-level production task.

5.4.3.2 Discourse-level Assessment Tasks
Two discourse-level tasks were designed for the second experiment. The primary goal of Experiment 2 and Study 2 was to measure learners’ ability to interpret and produce the English causative form when it is embedded in discourse. Hence, this section provides a full description of the discourse-level interpretation and production tasks used in the study.

5.4.3.2.1 Discourse-level Interpretation Task

A discourse-level interpretation task was designed to measure learners’ competence to interpret the English causative structure correctly when this is embedded in discourse. An original story was developed so that subjects were not familiar with its content; the reader is reminded that the use of well-known fables in previous research (e.g., Qin, 2008) has been criticised as an interference factor concerning the sensitivity of the assessment instrument. Therefore, participants had to listen to an original story of about three hundred words, which was presented in three segments (about one hundred words long) each containing three target items and two distracters. The task consisted of nine target items and six distracters in total. A booklet was constructed for the discourse-level interpretation task. Clear instructions were provided orally to the participants and only when no more clarifications were needed did the task begin. Learners heard the story’s segments only once. Then, they turned into the appropriate answer sheet, which consisted of pictures showing two different characters doing the same action and a third choice “Not Sure”. At this point, the participants had to decide who was performing the action and choose the correct picture or opt for “Not Sure” if they could not tell who the agent was. An example of a discourse-level interpretation task is provided in figure 5.8 (see full details of the discourse-level interpretation tasks in Appendix F).
Jack had to go on a business trip to Athens. He liked trips, so he had some coffee poured and started organizing it. He had his plane tickets booked. He didn’t have to book a hotel room as he was staying at a friend’s house. Then he started packing. He had his clothes ironed, and he put them into his luggage. He had previously made a list of the things he had to take with him so as not to forget anything. After he had checked every item on his list, he was ready to go. He got in a taxi and went to the airport.

(The distracters are typed in green and the target items in red. Two more segments followed each containing two distracters and three target items.)

Participants’ booklet first page
(Two more pages corresponding to the last two segments of the story were included in the test booklet.)
5.4.3.2.2 Discourse-level Production Task

One discourse-level production task was used to measure learners’ ability to produce the English causative form correctly when this is embedded in discourse. More specifically, the participants were asked to reconstruct a text of about one hundred words which contained five target items. Instructions were given orally to the participants, and no further explanation was needed. The subjects were initially provided with some key vocabulary items which were revised before the beginning of the story reading, and they also served as prompts at the reconstruction phase. The instructor read at normal pace an authentic story previously unknown to the learners. As the instructor read the story, it was also projected on the whiteboard enabling participants to read and listen at the same time. After listening to the story twice, participants were asked to rewrite what they had just heard and read. They had 5 minutes to reconstruct the story with the help of the prompts above and the provision of the story’s beginning which set the context but did not include any target items. An example of a discourse-level production task is provided in figure 5.9 (see full details in Appendix G).

<table>
<thead>
<tr>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>You will hear a story once and then we will be asked to re-write it. You have been given some words, please, write their definition before the story begins. If you still have unknown words in the following story, you can ask your instructor after the end of it.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor’s script</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
«Elena is pregnant; in a couple of months, she is going to have a baby daughter. Yesterday, she finished decorating her daughter’s room, but as she couldn’t do much herself, she had asked the help of her husband and friends. (This part was given to the participants) She had the walls painted pink because she always thought that pink is the perfect colour for girls. Also, she hanged some pictures of castles and princesses on the walls. She had the wooden floor polished and chose a soft white carpet for this room. She had her favourite armchair moved into the baby’s room where she would feed her. She also had a bed built for the baby, and she decorated it with stuffed animals and other toys. Finally, as her baby daughter will mostly look at the ceiling the first months, she thought that it would be a nice idea to make it look beautiful, so she had the sky painted on it. It is a very pretty room!» (Text to be reconstructed)

Figure 5.9. Example of a discourse-level production task. (full details in Appendix G)

5.4.4 Scoring

The same scoring procedure was applied in all experiments. Only the target items were scored in all tasks. Two experienced instructors scored all tests. One of them was the researcher. No differences were found in the scoring results of the two instructors.

5.4.4.1 Scoring: Sentence-level Interpretation and Production tasks

For the sentence-level interpretation task, only target items were scored. More specifically, 1 point was calculated for each correct answer and 0 points for an incorrect. Thus, the maximum score for this task could reach 10 points.

Likewise, only target items were scored in the sentence-level production task. Correct and accurate forms produced in this task received 1 point. Moreover, 0.5 points was received if an incorrect form of the verb was generated (e.g., an infinitive instead of a past participle). Whereas, ill forming of an irregular verb’s past participle was not counted as a mistake since this was not tested in the particular task, for example a sentence like the following: she had her hair cutted* at the hairdresser’s would receive 1 point, since the target item is correctly formed (i.e., Have + object + past participle) and it is clear that the learner has acquired the structure but not the irregular form of the participle. Also, no marks were deducted for other types of
mistakes that referred to vocabulary or spelling errors. However, incorrect responses received 0 points. For this task, the maximum score could reach seven points.

To sum up, the maximum scoring for each sentence-level task was the following: a) Interpretation sentence-level: 10 points and b) production sentence-level: 7 points.

5.4.4.2 Scoring: Discourse-level Interpretation and Production tasks

Similarly, only target items were scored. Precisely, for the discourse-level interpretation task participants received 1 point for each correct selection and 0 points for each incorrect one. Hence, the maximum score for this task could reach 9 points as many as the target items.

For the discourse-level production task, 1 point was received for each correctly produced item and 0 points for incorrect use of the target item. As incorrect was also considered output that provided the correct meaning albeit expressed with a different structure from the targeted one. For example, when the original read: “she asked help from her neighbours … she had the walls painted white” and the sentence produced was: “They or The neighbours painted the walls white” although the meaning was correctly conveyed, no points were received since the target item was not produced. Moreover, 0,5 points was received if an incorrect form of the verb was generated (e.g., an infinitive instead of a past participle). On the other hand, incorrect forming of irregular participles (e.g., cutted* instead of cut) was not taken into consideration, and 1 point was assigned when scoring a produced target item, following the same rationale as in the sentence-level production scoring. Also, no marks were deducted for other types of mistakes that referred to vocabulary or spelling errors. In sum, the maximum score for this task could reach 5 points. Hence,
in this experiment maximum scoring could reach 9 points for the discourse-level interpretation and 5 for the discourse-level production task.

To sum up, the maximum scoring for each discourse-level task was the following: a) Interpretation discourse-level: 9 points and b) Production discourse-level: 5 points.

5.4.5 Data collection procedures

Three versions of the above-described assessment tasks were developed for Study 1 and were implemented in a split block design. More specifically, in both Experiments, data were collected in a pretest, immediate posttest and a three-week delayed posttest design. The pretest was assigned one week before treatment to check for previous knowledge of the English causative form. Immediately after instruction data were collected with a different version of the test to check for immediate effects of instruction; three weeks later another version of the test was assigned to each group to check for short-term effects of treatment.

In the first study, the split block design was as follows (see also table 5.5):

a) the Structured Output (SO) group was assigned Version A as pretest, Version B as immediate posttest and Version C as delayed posttest;
b) the Structured input (SI) group was assigned Version C as pretest, Version C as immediate posttest and Version B as delayed posttest;
c) the Structured input and Structured Output (SI+SO) group was assigned Version B as pretest, Version C as immediate posttest and Version A as delayed posttest;
d) the Control group (Experiment 1 only) was assigned Version A as pretest, Version C as immediate posttest and Version B as delayed posttest;
For Study 2 (Experiment 3) another version of the test was developed to be used as the delayed posttest. The third posttest aimed to check for delayed effects six months after instruction. More specifically, the split block design was as follows (see also table 5.6.):

a) the Structured Output (SO) was assigned Version A as pretest, Version B as immediate posttest, Version C as delayed posttest and Version D as the six-month delayed posttest;

b) the Structured input (SI) group was assigned Version D as pretest, Version A as immediate posttest, Version B as the three-week delayed posttest and Version C as the six-month delayed posttest;

c) the Structured input and Structured Output (SI+SO) group was assigned Version B as pretest, Version C as immediate posttest, Version D as the three-week delayed posttest and Version A as the six-month delayed posttest;

<table>
<thead>
<tr>
<th></th>
<th>Pretest</th>
<th>Posttest 1</th>
<th>Posttest 2</th>
<th>Posttest 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO</td>
<td>Version A</td>
<td>Version B</td>
<td>Version C</td>
<td>Version D</td>
</tr>
<tr>
<td>SI</td>
<td>Version D</td>
<td>Version A</td>
<td>Version B</td>
<td>Version C</td>
</tr>
<tr>
<td>SI+SO</td>
<td>Version B</td>
<td>Version C</td>
<td>Version D</td>
<td>Version A</td>
</tr>
</tbody>
</table>

Table 5.5. Split block design used in Study 1
Note: a control group was used only in Experiment 1

Table 9. Split block design used in Study 2

5.5 Data analysis procedures

For both experiments, a one-way ANOVA was conducted on the raw scores of all tasks collected with the pretests, to check for previous knowledge of the target
item and establish that population among groups was homogeneous at the beginning of instruction. Moreover, a repeated-measures ANOVA (analysis of variance) was conducted on the raw scores collected with the previously described assessment instruments. More specifically, two-way repeated measures ANOVA with one between-subject factor (Treatment) and one within-subject factor (Time) repeated measures factorial design (pre-vs posttest) was carried out on the raw scores of each assessment task (interpretation sentence and discourse-level, production sentence and discourse-level (Experiment2 and Experiment 3 (Study 2)). The raw scores were used as dependent variables and types of instruction as independent variables. A post-hoc test was used to measure possible difference between the treatments. Descriptive statistics provided information about means and standard deviation in each of the dependent factor. An in-detail description of the analyses of results is provided in the following chapter.
CHAPTER SIX: RESULTS

6.1 Introduction

This chapter provides the results of the two studies described in the previous section. Firstly, it details the results of Study 1 as follows:

a) The sentence-level interpretation task data analysis (Experiment 1);
b) The sentence-level production task data analysis (Experiment 1);
c) The discourse-level interpretation task data analysis (Experiment 1);
d) The discourse-level interpretation task data analysis (Experiment 2); and,
e) The discourse-level production task data analysis (Experiment 2)

The next section presents the results of Study 2 (Experiment 3). This study focuses on measuring discourse and long-term effects of treatment. Therefore, the last data were collected six months after instruction. For Study 2 (Experiment 3) the results are presented as follows:

a) The discourse-level interpretation task data analysis; and,

b) The discourse-level production task data analysis.

Finally, the present chapter concludes with a summary of the findings.

6.2 Study 1

This section provides the statistical analyses of the data collected during Study 1 with two Experiments. It begins with the analysis of the data collected in Experiment 1, that is, sentence-level interpretation and production data and discourse-level interpretation data. It ends with the data collected in Experiment 2, that is, discourse-level interpretation and production data.
6.2.1 Sentence-level interpretation data (Experiment 1)

An aural interpretation task including ten target items was used for the present data collection. The means and standard deviations for the sentence-level interpretation task are provided in Table 6.1, and the results are graphically represented in Figure 6.1. A one-way ANOVA was conducted on the pretest scores. The analysis showed no significant differences between the four groups before instruction (F (3, 54) =0.403 p=0.239). Therefore, any differences found after treatment will be attributed to the effects of instruction.

The mean scores of the four groups in the sentence-level interpretation task (pretest, posttest and delayed posttest) clearly show that the Structured input (SI) and the Structured input and Structured Output (SI+SO) groups’ scores improved from pretest to posttests. The Structured Output (SO) and the control group3 made no gains from pretest to posttests.

<table>
<thead>
<tr>
<th>Groups</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>13</td>
<td>0.9231</td>
<td>0.7595</td>
<td>6.1530</td>
<td>0.6887</td>
<td>6.0760</td>
<td>0.6405</td>
</tr>
<tr>
<td>SO</td>
<td>15</td>
<td>0.9333</td>
<td>0.5936</td>
<td>1.0000</td>
<td>0.5345</td>
<td>0.6000</td>
<td>0.6324</td>
</tr>
<tr>
<td>SI+SO</td>
<td>16</td>
<td>0.5000</td>
<td>0.6324</td>
<td>5.5000</td>
<td>0.7303</td>
<td>5.1870</td>
<td>0.6551</td>
</tr>
<tr>
<td>Control</td>
<td>10</td>
<td>0.7000</td>
<td>0.6749</td>
<td>0.4000</td>
<td>0.5164</td>
<td>0.3000</td>
<td>0.4830</td>
</tr>
</tbody>
</table>

Table 6.1. Study 1 – Interpretation sentence-level task (descriptive statistics).

A repeated-measures ANOVA was used on the raw scores of the sentence-level interpretation task. It showed a significant main effect for Treatment (F (3, 54) =286.456, p < 0.000); a significant main effect for Time F (3, 54) =115.111, p<0.000; and significant interaction between Treatment and Time F (3,54) = 49.839, p<0.001. Given the significant main effect for instructional treatment, post-hoc tests were

3 The slight and statistically insignificant drop in the performance of the control group (see Table 6.1) can be explained by the small size of participants.
conducted to compare the group’s scores from the pre-test to the post-tests. The post-hoc Tukey test showed that the Structured input (SI) group and the Structured input and Structured Output (SI+SO) group were equal (p= 0.059) and significantly different from the Structured Output (p= 0.000) and Control group (p= 0.000). There was no difference between the Structured Output (SO) group and Control group (p= 0.107).

To investigate possible delayed effects, a second ANOVA was conducted on the raw scores of the two sentence-level interpretation post-tests. The results showed a significant main effect for Treatment (F (3, 54) =311.527, p < 0.000). The post-hoc Tukey test showed that the Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups again equal (p= 0.057) and significantly different than the Structured Output (p= 0.002) and Control group (p= 0.000). There was no difference between the Structured Output (SO) group and Control group (p= 0.636).

Figure 6.1. Results of the sentence-level interpretation tasks- Experiment 1

The results from the sentence-level interpretation task demonstrated that only the Structured input (SI) and Structured input and Structured Output (SI+SO) groups gained in their ability to interpret English causative forms presented at the sentence-
level. These gains were maintained over a period of three weeks. The graphical representation also shows that the Structured Output (SO) group and the control group made no significant gains from pretest to the two posttests.

#### 6.2.2 Sentence-level production data (Experiment 1)

A fill-in-the-gaps written task consisting of seven target items was used for the present data collection. The means and standard deviations for the sentence-level production task are provided in Table 6.2, and the results are graphically represented in Figure 14. A one-way ANOVA was carried out on the pre-test scores. The analysis showed no significant differences between the four groups before instruction (F (3, 54) = 0.343, p = 0.165). Thence, any differences found after instruction will be attributed to the effects of instruction.

The descriptive statistics show the means of the four groups in the sentence-level production task. The Structured input (SI) group, the Structured Output (SO) group and the Structured input and Structured Output (SI+SO) groups made significant gains from pretest to posttest scores. The control group did not improve from pretest to posttest.

<table>
<thead>
<tr>
<th>Groups</th>
<th>N</th>
<th>Pre-test Mean</th>
<th>Pre-test SD</th>
<th>Post-test Mean</th>
<th>Post-test SD</th>
<th>Delayed Mean</th>
<th>Delayed SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>13</td>
<td>1.000</td>
<td>0.7071</td>
<td>4.1530</td>
<td>0.8006</td>
<td>3.9690</td>
<td>0.5991</td>
</tr>
<tr>
<td>SO</td>
<td>15</td>
<td>0.6333</td>
<td>0.5936</td>
<td>5.5330</td>
<td>0.8338</td>
<td>4.8660</td>
<td>0.7432</td>
</tr>
<tr>
<td>SI+SO</td>
<td>16</td>
<td>0.7500</td>
<td>0.7746</td>
<td>5.4750</td>
<td>0.8062</td>
<td>5.1000</td>
<td>0.6311</td>
</tr>
<tr>
<td>Control</td>
<td>10</td>
<td>0.2000</td>
<td>0.4216</td>
<td>0.3000</td>
<td>0.4830</td>
<td>0.4000</td>
<td>0.6762</td>
</tr>
</tbody>
</table>

Table 6.2. Experiment 1 – Production sentence-level task (descriptive statistics).

A repeated-measures ANOVA was used on the raw scores of the sentence-level production task. The results from the statistical analysis showed a significant main effect for Treatment (F (3, 54) = 114.357, p < 0.000); a significant main effect for Time (3, 54) = 66.958, p < 0.000; and significant interaction between Treatment
and Time F (3, 54) = 51.902, p < 0.000. A post-hoc Tukey test yielded the following contrasts: Structured input (SI) group, Structured Output (SO) group and the Structured input and Structured Output (SI+SO) groups were equal (p = 0.205) and significantly different than the Control group (p = 0.000). To investigate possible delayed effects, a second ANOVA was conducted on the raw scores of the sentence-level production post-tests. The results showed a significant main effect for Treatment (F (3,54) =115.642, p< 0.000). The post-hoc Tukey test showed again that the three instructional groups were equal (SI = SO = SI+SO, p= 0.945) and significantly different than the Control group (p= 0.000). The results from the sentence-level production task demonstrated that all the instructional treatments (SI, SO and SI+SO) made equal gains in their ability to produce English causative forms at sentence-level from pretest to the immediate posttest. These gains were maintained over a period of three weeks. Also, as it is displayed on the graph (figure 6.2) below the control group made no gains from pretest to the two posttests.

![results of sentence-level production task](Image)

**Figure 6.2. Results of sentence-level production tasks**

### 6.2.3 Discourse-level interpretation data (Experiment 1)
An aural interpretation task which included nine target items embedded in discourse (i.e., an original story) was used for the present data collection. The means and standard deviations for the discourse-level interpretation task are provided in Table 6.3, and the results are graphically represented in Figure 6.3. A one-way ANOVA was conducted on the pre-test scores. The analysis showed no significant differences between the four groups before instruction (F (3,54) = 0.435, p=0.225). Consequently, any differences found after instruction will be attributed to the effects of instruction.

The descriptive statistics show the means of the four groups in the discourse-level interpretation task (pre-test, post-test and delayed post-test). The Structured input and the Structured input and Structured Output (SI+SO) groups clearly improved from pretest to posttest scores.

<table>
<thead>
<tr>
<th>Groups</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>13</td>
<td>0.5385</td>
<td>0.5188</td>
<td>4.7690</td>
<td>0.8320</td>
<td>4.5380</td>
<td>0.7762</td>
</tr>
<tr>
<td>SO</td>
<td>15</td>
<td>0.7333</td>
<td>0.5676</td>
<td>0.6000</td>
<td>0.6324</td>
<td>0.3333</td>
<td>0.4879</td>
</tr>
<tr>
<td>SI+SO</td>
<td>16</td>
<td>0.4347</td>
<td>0.5123</td>
<td>5.3750</td>
<td>0.6191</td>
<td>5.0000</td>
<td>0.6324</td>
</tr>
<tr>
<td>Control</td>
<td>10</td>
<td>0.3000</td>
<td>0.4830</td>
<td>0.2000</td>
<td>0.4216</td>
<td>0.4000</td>
<td>0.6992</td>
</tr>
</tbody>
</table>

Table 6.3. Experiment 1–Interpretation discourse-level task (descriptive statistics).

A repeated-measures ANOVA was adopted on the raw scores of the discourse-level interpretation task. It showed a significant main effect for Treatment (F (3, 54) = 231.740, p < 0.000); a significant main effect for Time F (3, 54) = 118.469, p < 0.000; and significant interaction between Treatment and Time F (3, 54) = 98.525, p < 0.000. Given the significant main effect for instructional treatment, post-hoc tests were conducted to compare the group’s scores from the pre-test to the post-tests. The post-hoc Tukey test showed that the Structured input group and the
Structured input and Structured Output (SI+SO) groups were equal (p=0.074) and significantly different than the Structured Output (p= 0.000) and Control group (p= 0.000). There was no difference between the Structured Output (SO) group and Control group (p=0.444). To investigate possible delayed effects, a second ANOVA was conducted on the raw scores of the two discourse-level interpretation post-tests. The results showed a significant main effect for Treatment (F (3, 54) = 88.469, p< 0.000). The post-hoc Tukey test showed that the Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups were again equal (p= 0.237) and significantly different than the Structured Output (p= 0.000) and Control group (p= 0.000). There was no difference between the Structured Output (SO) group and Control group (p=0.994). The results from the discourse-level interpretation task indicated that only the Structured input (SI) and Structured input and Structured Output (SI+SO) groups gained in their ability to interpret English causative forms presented at the discourse-level. These gains were maintained over a period of three weeks. However, the Structured Output (SO) group and the control group made no significant gains. Figure 6.3 below represents the results graphically.

![Results of discourse-level interpretation task - Experiment 1](image)

Figure 6.3. Results of discourse-level interpretation tasks - Experiment 1
6.2.4 Discourse-level interpretation data (Experiment 2)

Again, an aural interpretation task which included nine target items embedded in discourse (i.e., an original story) was used for the present data collection. The means and standard deviations for the discourse-level interpretation task collected during Experiment 2 are provided in Table 6.4, and the results are graphically represented in Figure 6.4. The one-way ANOVA conducted on the pretest scores showed no significant differences between the three groups before instruction (F (2, 30) = 12.403  p= 0.110). Hence, any differences found after instruction will be attributed to the effects of instruction.

The descriptive statistics show the means of the three groups in the discourse-level interpretation task in the immediate posttest and delayed posttests. The Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups improved from pretest to posttest scores. There was also a minimum improvement of the Structured Output (SO) group in the first posttest.

<table>
<thead>
<tr>
<th>Groups</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>10</td>
<td>0.750</td>
<td>0.700</td>
<td>7.000</td>
<td>1.314</td>
<td>6.400</td>
<td>0.6263</td>
</tr>
<tr>
<td>SO</td>
<td>10</td>
<td>0.745</td>
<td>0.631</td>
<td>1.087</td>
<td>0.450</td>
<td>0.850</td>
<td>0.5555</td>
</tr>
<tr>
<td>SI+SO</td>
<td>10</td>
<td>0.735</td>
<td>0.340</td>
<td>7.200</td>
<td>1.341</td>
<td>6.500</td>
<td>0.3562</td>
</tr>
</tbody>
</table>

Table 6.4. Experiment 2 – Interpretation discourse-level task (descriptive statistics).

A repeated-measures ANOVA was used on the raw scores of the discourse-level interpretation task. It showed a significant main effect for Treatment (F (2, 30) = 84.626, p <0.000); a significant main effect for Time F (2,30) =78.970, p <0.000; and significant interaction between Treatment and Time F (2,30) = 33.801, p <0.001. Given the significant main effect for instructional treatment, post-hoc tests were
conducted to compare the group’s scores from the pretest to the posttests. The post-hoc Tukey test showed that the Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups were equal (p =0.921) and significantly different than the Structured Output (p =0.000). To investigate possible delayed effects, a second ANOVA was conducted on the raw scores of the two discourse-level interpretation post-tests. The results showed only a significant main effect for Treatment (F (2, 30) =77.402, p <0.000). The post-hoc Tukey test indicated that the Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups made equal gains (p =0.545) and significantly different than the Structured Output (p =0.002). For the Structured Output (SO) group, in the immediate posttest minimum gains were found, which were not retained in the delayed posttest three weeks later. The results from the discourse-level interpretation task were similar to the one obtained in Experiment 1 and demonstrated that only the Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups gained in their ability to interpret English causative forms presented at the discourse-level. The SI and SI+SO groups maintained these gains over a period of three weeks. These results are also displayed in Figure 6.4 below.

![Figure 6.4. Results of discourse-level interpretation tasks - Experiment 2](image-url)
6.2.5. Discourse-level production data (Experiment 2)

A written text re-construction task which included five target items embedded in discourse (i.e., an original story) was used for the present data collection. The means and standard deviations for the discourse-level interpretation task collected during Experiment 2 are provided in Table 6.5, and the results are graphically represented in Figure 6.5. The one-way ANOVA conducted on the pretest scores showed no significant differences between the three groups before instruction (F (2, 30) =16.456 p =0.210). Therefore, any differences found after instruction will be attributed to the effects of instruction.

The descriptive statistics show the means of the three groups in the discourse-level production task in the immediate posttest and delayed posttests. The Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups have improved from pretest to posttest scores. There was no improvement for the Structured Output (SO) group.

<table>
<thead>
<tr>
<th>Groups</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>10</td>
<td>0.1500</td>
<td>0.232</td>
<td>2.7000</td>
<td>0.653</td>
<td>2.300</td>
<td>0.525</td>
</tr>
<tr>
<td>SO</td>
<td>10</td>
<td>0.1000</td>
<td>0.222</td>
<td>0.2255</td>
<td>0.452</td>
<td>0.015</td>
<td>0.443</td>
</tr>
<tr>
<td>SI+SO</td>
<td>10</td>
<td>0.3333</td>
<td>0.300</td>
<td>2.5000</td>
<td>0.341</td>
<td>2.400</td>
<td>0.500</td>
</tr>
</tbody>
</table>

Table 6.5. Experiment 2 – Production discourse-level task (descriptive statistics).

A repeated-measures ANOVA was used on the raw scores of the discourse-level production task. It showed a significant main effect for Treatment (F (2, 30) = 124.636, p < 0.000); a significant main effect for Time (2, 30) = 86.669, p <0.000; and significant interaction between Treatment and Time F (2, 30) = 45.162, p <0.000. Given the significant main effect for instructional treatment, post-hoc tests were conducted to compare the group’s scores from the pre-test to the post-tests. The post-
hoc Tukey test showed that the Structured input (SI) group and the Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups were equal (p =0.829) and significantly different than the Structured Output (p =0.000). To investigate possible delayed effects, a second ANOVA was conducted on the raw scores of the two discourse-level production post-tests. The results indicated a significant main effect for Treatment (F (2, 30) =14.362, p <0.000). A post-hoc Tukey test conducted on the treatment revealed the following contrasts: The Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups were equal (p=0.998) and significantly different than the Structured Output (p =0.001). The results from the discourse-level production demonstrated no gains for the Structured Output (SO) group. Only the Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups gained in their ability to produce English causative forms presented at the discourse-level. The Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups maintained these gains over a period of three weeks. Figure 6.5 below represents the results graphically.

Figure 6.5. Results of discourse-level tasks Experiment 2
6.3 Study 2 (Experiment 3)

Study 2 (Experiment 3) was conducted to address the third research question which seeks for long-term effects of Structured input, Structured Output and Structured input and Structured Output at discourse-level. Therefore, this section provides the discourse-level interpretation, and production data collected one week previous to instruction, immediately, three weeks and six months after instruction.

6.3.1 Discourse-level interpretation data

The same aural interpretation task administered in Study 1 which included nine target items embedded in discourse (i.e., an original story) was also used for the present data collection. The means and standard deviations for the discourse-level interpretation task collected during Study 2 (Experiment 3) are provided in Table 6.6, and the results are graphically represented in Figure 6.6. A one-way ANOVA was conducted on the pretest scores. The analysis showed no significant differences among the three groups before instruction ($F (2,68) = .113 \ p = .138$). Thus, any differences found after instruction will be attributed to the effects of instruction.

The descriptive statistics show the means of the three groups in the discourse-level interpretation task (i.e., pretest, immediate posttest, three-week posttest and six-month posttest). The Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups clearly improved from pretest to posttest scores.
A repeated-measures ANOVA was adopted on the raw scores of the discourse-level interpretation task. It showed a significant main effect for Treatment $(F(2,68) = 69.744, p < .000)$; a significant main effect for Time $F(2,68) = 22.300, p < .000$; and significant interaction between Treatment and Time $F(2,68) = 18.244, p < .000$. Given the significant main effect for instructional treatment, post-hoc tests were conducted to compare the groups’ scores from the pre-test to the post-tests. The post-hoc Scheffe test showed that the Structured input group and the Structured input and Structured Output groups were not statistically different ($p = .204$) and significantly different than the Structured Output ($p = .000$).

A second repeated measured ANOVA was conducted on the raw scores of the discourse-level interpretation posttests (immediate effects vs three weeks delayed effects vs six months delayed effects) to investigate possible delayed effects. The results showed a significant main effect for Treatment $(F(2,68) = 37.507, p < .000)$ no significant main effect for Time $F(2,68) = 28.451, p < .102$; and no significant interaction between Treatment and Time $F(2,68) = 14.654, p < .158$. The post-hoc Scheffe test showed that the Structured input group and the Structured input and Structured Output groups were not statistically different ($p = .117$) and significantly different than the Structured Output ($p = .000$).
The results from the discourse-level interpretation task indicated that only the Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups gained in their ability to interpret English causative forms presented at the discourse-level. These gains were durable and maintained over a period of six months. Although a slight decrease was observed in the two delayed posttests compared to the immediate posttest scores, this was not statistically significant. The Structured Output (SO) group made no significant gains. The results are represented graphically in Figure 6.6 below.

![Figure 6.6. Results of discourse-level interpretation tasks Study 2 (Experiment 3)](image)

### 6.3.2 Discourse-level production data

As in Experiment 2 above, in this study too, a written text re-construction task was used for the data collection. The task included five target items embedded in discourse (i.e., an original story). The means and standard deviations for the discourse-level interpretation task collected during Study 2 (Experiment 3) are provided in Table 6.7, and the results are graphically represented in Figure 6.7. The one-way ANOVA conducted on the pretest scores showed no significant differences
between the three groups before instruction ($F(2,34) = 1.223, p = .801$). Therefore, any differences found after instruction will be attributed to the effects of instruction.

The descriptive statistics below show the means of the three groups in the discourse-level interpretation task in the pretest, the immediate posttest and the two delayed posttests. The Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups improved from pretest to posttest scores. The Structured Output (SO) group did not improve from pretest to posttest scores.

<table>
<thead>
<tr>
<th>Groups</th>
<th>n</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>22</td>
<td>0.2727</td>
<td>0.90453</td>
<td>2.8818</td>
<td>1.94001</td>
<td>2.4650</td>
<td>1.48324</td>
<td>2.5000</td>
<td>1.36848</td>
</tr>
<tr>
<td>SO</td>
<td>22</td>
<td>0.090 9</td>
<td>0.30151</td>
<td>1.0909</td>
<td>1.22103</td>
<td>0.5455</td>
<td>0.68755</td>
<td>0.1818</td>
<td>0.60302</td>
</tr>
<tr>
<td>SI+SO</td>
<td>24</td>
<td>0.1667</td>
<td>0.57735</td>
<td>2.1000</td>
<td>1.05529</td>
<td>2.0000</td>
<td>1.12815</td>
<td>1.9000</td>
<td>0.90034</td>
</tr>
</tbody>
</table>

Table 6.7. Study 2- Production discourse-level task (descriptive statistics).

A repeated-measures ANOVA was used on the raw scores of the discourse-level interpretation task. It showed a significant main effect for Treatment ($F(2,34) = 10.004, p < .000$); a significant main effect for Time $F(2,34) = 5.772, p < .003$; and significant interaction between Treatment and Time $F(2,34) = 1.007, p < .004$. Given the significant main effect for instructional treatment, post-hoc tests were conducted to compare the groups’ scores from the pre-test to the post-tests. The post-hoc Scheffe test showed that the Structured input group and the Structured input and Structured Output groups were equal ($p = .401$) and significantly different than the Structured Output ($p = .000$).

To investigate possible delayed effects (immediate effects vs three weeks delayed effects), a second ANOVA was conducted on the raw scores of the two
discourse-level interpretation post-tests. The results showed only a significant main effect for Treatment \( (F (2,34) = 7.690, p < .007) \). The post-hoc Scheffe test indicated that the Structured input group and the Structured input and Structured Output groups made equal gains \( (p = .139) \) and significantly different than the Structured Output \( (p = .000) \).

An additional ANOVA was used on the raw scores to measure possible delayed effects after six months (three weeks delayed effects vs twenty-four delayed effects). Once again, the results indicated a significant main effect for Treatment \( (F (2,34) = 7.134, p < .000) \). The post-hoc Scheffe test showed that the Structured input group and the Structured input and Structured Output groups were again equal \( (p = .147) \) and both significantly different than the Structured Output \( (p = .000) \).

The results from the discourse-level production task were similar to the ones obtained in interpretation discourse-level and demonstrated that only the Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups gained in their ability to produce English causative forms presented at the discourse-level. The SI and SI+SO groups maintained these gains over a period of six months. The Structured Output (SO) group made no significant gains. The results are represented graphically in Figure 6.7.
6.4 Summary of findings

The three main aims of the present study were as follows:

1) To compare and contrast three instructional treatments (structured input (SI) only, structured output (SO) only, and a combination of structured input and structured output (SI+SO)) on the acquisition of only one of the English causative forms;

2) To measure the effects of Structured input and Structured Output practice, alone and in combination, on both sentence and discourse-level interpretation and production tasks.

3) To examine whether the effects found at discourse-level can be retained (a) three weeks and (b) six months after instruction.

Based on the abovementioned aims three specific research questions were formulated (see chapter four). The results detailed in this chapter provide answers to all three research questions and are presented in this section.

The first research question developed in this thesis was: What are the immediate and short-term effects of Structured input, Structured Output and
Structured input followed by Structured Output, on the acquisition of the English causative form as measured with sentence-level interpretation and production tasks? This is answered by the findings obtained in Study1-Experiment1 (see above section).

The results of interpretation sentence-level tasks (see figure 6.4) in Experiment 1 clearly indicated that Structured input and a combination of Structured input followed by Structured Output helps learners to process the English causative form correctly and appropriately. The gains made by the Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups were maintained three weeks after instruction. Learners in these instructional groups improved significantly their ability to interpret the target linguistic item when it is presented at sentence-level. On the other hand, learners in the Structured Output (SO) and Control groups did not improve their ability to interpret the English causative form when encountered in sentences.

The results of the production sentence-level task (see figure 6.2) revealed the three instructional groups (SI, SO, and SI+SO) made equal gains from pretests to posttests. Learners receiving all three types of treatment improved significantly their ability to produce the English causative forms at a sentence-level. Also, the three groups were statistically better than the Control group indicating an effect for instruction. The improvement found for these three groups was maintained for three weeks after the end of the instructional treatment.

The second research question was: What are the immediate and delayed effects of Structured input, Structured Output and Structured input followed by Structured Output on the acquisition of the English causative form as measured with discourse-level interpretation and production tasks? This question is answered by the
findings obtained in Experiment 2 (Study 1) and Experiment 3 (Study 2). Also, the results obtained in Experiment 1 (discourse-level interpretation task) provide an answer for the first part of this question.

The results of interpretation discourse-level tasks (see figures 6.3, 6.4 and 6.6) are similar in all three experiments (Study 1 and Study 2). They clearly indicated that Structured input and a combination of Structured input and Structured Output are more effective than the Structured Output and the control group in interpreting the English causative forms correctly at the discourse-level. Only the learners in the Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups improved significantly in their ability to interpret the target linguistic feature when this was embedded in discourse. This applied to all learners regardless their age, L1 or the context in which English was learned. The improvement found for the Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups was maintained three weeks after instruction.

The results of the production discourse-level task in Experiment 2 (see figure 6.5) and in Study 2 (see figure 6.7) echoed the one obtained for the interpretation discourse-level tasks in Study 1 and Study 2. Again, the findings in all three experiments indicated that the two instructional groups, i.e., the Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups improved from pretests to posttests, whereas the Structured Output (SO) group did not. The advantage found for these two groups was maintained over a three weeks period.

The third research question was: What are the long-term effects of Structured input, Structured Output and a combination of Structured input and Structured Output on the acquisition of the passive English causative form as measured with discourse-
level interpretation and production tasks? Are any possible immediate and/or short-term effects retained six months after instruction? The answer to this question is provided by the findings revealed in Study 2 (Experiment 3).

The results of the interpretation discourse-level task (see figure 6.6) clearly indicated that the improvement found in the immediate and delayed (3 weeks after instruction) posttests for the Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups were maintained six months after instruction. Learners receiving Structured input alone and in combination improved their ability to interpret the English causative forms when embedded in discourse and this improvement was in effect six months after instruction. Although there was a slight decline in the mean scores of the participants from the three-week and six-month test, and immediate to six-month test this was not statistically significant and was in line with previous findings investigating long-term effects. The Structured Output group did not make any significant gains in any of the posttests.

The results of the production discourse-level task (see figure 6.7) echoed the ones obtained for the interpretation discourse-level task. They also indicated that the two instructional groups, namely the Structured input (SI) group and the Structured input and Structured Output (SI+SO) groups, maintained the positive effects of instruction after six months, whereas the Structured Output (SO) group did not. Learners receiving Structured input alone and in combination improved their ability to produce the English causative forms when embedded in discourse and this improvement was observed six months after instruction. Both the Structured input and Structured input followed by Structured Output groups’ scores slightly decreased from the immediate to the three-week test and from the immediate to six-month test,
and this is in line with previous findings investigating delayed effects for Processing Instruction.

To sum up, the main findings of the present study are as follows:

1) Structured input practice alone and in combination (i.e., SI+SO) is effective in helping L2 learners to process and interpret English causative forms both at sentence- and discourse-level no matter their age, L1 or context of learning.

2) Structured input, Structured Output and Structured input followed by Structured Output practice were equally effective in helping learners produce the English causative form in the sentence-level task.

3) Structured input and Structured input followed by Structured Output practice were equally effective in helping learners to produce the English causative forms at discourse-level. Structured Output practice alone was not enough to provide learners with the ability to produce discourse containing the target linguistic feature.

4) Learners receiving Structured input practice alone and in combination (i.e., SI and SI+SO) can maintain the positive effects of treatment six months after instruction. Results indicated that learners receiving Structured input alone and in combination retain their ability to interpret and produce the English causative forms at discourse-level up to six months after instruction.

5) Structured input practice has undoubtedly altered the way learners processed input. It pushed them to abandon their inefficient strategy, in this case, the First Noun Principle and this affected their developing system. Subsequently, this had an effect on what learners could access for production. Hence,
Structured input practice not only had an impact on the way learners interpreted but also on the way they produced the target form.

The above findings are further discussed in the following chapter. More specifically, the next chapter discusses the main contributions but also the main limitations of the present study. It concludes with suggestions for further future research on this area.
CHAPTER SEVEN: DISCUSSION AND CONCLUSION

7.1 Introduction

The purpose of this chapter is to discuss the general findings in light of previous research and to draw some conclusions about the results of this experimentation. This section also discusses the theoretical and pedagogical implications of the present findings. Finally, limitations of this research will be addressed, and suggestions for further research offered.

7.2 Discussion of the findings

The main aim of the present research project was to measure the relative effects of structured input and structured output in isolation and in combination on the acquisition of the English causative forms. The assessment tools used in the present study were both sentence and discourse-level interpretation and production tasks. An additional aim of the present experimentation was to measure whether any immediate or short-term effects found could be retained in the long-term.

The present research project consists of two primary effects studies. Study 1 comprises two parallel experiments, referred to as Experiment 1 and Experiment 2. Experiment 1 (adult Chinese participants) used sentence-level interpretation and production task and one discourse interpretation task. Experiment 2 (children Greek participants) used interpretation and production tasks at discourse-level. Experiment 1 and Experiment 2 measured immediate and short-term effects. Experiment 3 (children Greek participants), used only discourse-level tasks in both interpretation and production and measured immediate, short-term and long-term effects.
The findings from the interpretation sentence-level task (Experiment 1) are in line with previous results obtained measuring the effects of structured input practice. They provide further empirical support for the view that structured input is better than structured output (meaning output-based instruction) in altering the way learners process input. Structured input practice is a more effective pedagogical intervention than structured output in helping L2 learners to process and interpret English causative forms and providing ‘richer’ intake for their developing system. Indeed, the fact that the only instructional groups that made gains were the ones that shared the structured input component (i.e., the SI group and the SI + SO group) provides strong evidence to support the view that structured input alone is sufficient to improve learner’s performance in interpretation tasks (sentence-level). The structured output only group made no gains in the interpretation sentence-level tasks. This outcome suggests that the structured output practice was not able to steer learners away from their reliance on the First Noun Principle when attempting to identify the agent in a sentence.

The above conclusions are further supported by the results obtained for the interpretation discourse-level task. In all the experiments conducted for the present research project, the structured input groups and the combination (SI+SO) groups outperformed the structured output only groups providing additional evidence of the impact of this input-based pedagogical intervention on input processing.

One possible explanation of these results might be found in the nature and purpose of structured input activities. As outlined by Wong (2004:35) structured input ‘push learners to abandon their inefficient processing strategies for more optimal ones’. Structured input significantly improved learners’ interpretation of both sentence and discourse containing the passive English causative structure. L2 learners
in both the structured input group (SI) and the combination groups (SI+SO) groups were also able to interpret the target forms provided to them in discourse.

The findings from the production sentence-level task in Experiment 1 are in line with previous research findings on the effects of structured input practice (Benati, 2004a, 2005; Benati and Lee, 2008; see also Lee and Benati, 2009; and Benati and Lee, 2015). The structured input group, structured output group and the combination treatment (SI+SO) group performed equally in the production sentence-level task. The evidence obtained in the sentence-level production task further suggests that structured input not only have an impact on the way learners interpret sentences but also on the way that learners produce sentences containing the target form. Structured input alters the way L2 learners process input, and this affects their developing system and subsequently on what they could access for production. These findings are in line with the original study conducted by VanPatten and Cadierno (1993:240). ‘‘Learners who receive instruction that attempts to alter input processing receive a double bonus: better processing of input and knowledge that is apparently also available for production’’.

Overall, the results of the present thesis reinforce the view that structured input practice is an effective pedagogical practice in pushing learners away from their non-optimal strategy, in this case, the First Noun Principle, when processing the English causative forms. Structured input practice helped learners in this research project to make the appropriate interpretation while processing the target forms. This, in turn, provided them with richer intake which they integrated into their developing system. Only by altering learners’ developing system would we get effects on tasks that were not practised during instruction like in the case of the production tasks.
The findings obtained in the present experimentation for production tasks are in line with previous research findings in the Processing Instruction and structured input research framework (Benati and Lee, 2008; see also Lee and Benati, 2009; and Benati and Lee, 2015). Structured input has altered the way learners processed input, and this led to alterations in L2 learners’ developing system and subsequently on what learners could access for production. More robust support for the effectiveness of structured input practice is provided by the results from the production discourse-level tasks where learners had to produce target forms in a less controlled situation. The main findings from the discourse-level production task in Experiment 2 and Experiment 3 indicate that only the structured input and the combination between structured input and structured output (SI+SO) groups made statistically consistent gains from pre-tests to post-tests. Structured output practice alone was not enough to provide learners with the ability to produce discourse containing the target feature. While the structured input treatment is successful at circumventing processing problems and consequently having an impact on learners’ developing system, the structured output treatment was not successful at producing positive effects (circumventing the processing problem) on learners’ performance. Output practice might help with fluency and accuracy in production, but it cannot cause alternations within the developing system. In short, output practice does not seem to be ‘responsible’ for getting the grammar into learners’ head. Structured input practice might have an effect on L2 learners’ mental representation as learners were able to access the appropriate information in their internal system for production in both sentence and discourse-level tasks.

The findings from the experiments presented in this project lend further support to the view that structured input has short and long-term effects. In both
interpretation tasks, the structured input groups and the combination (SI+SO) groups were able to maintain the gains made over a three-week period. Results from Experiment 3 further demonstrated that both these groups were able to retain their ability to interpret the English causative form when embedded in discourse up to six months after instruction. Similarly, the gains made by the structured input and the combination (SI+SO) groups at the sentence and discourse-level tasks were retained over a period of three weeks and six months respectively. As VanPatten and Fernández (2004) also argued long-term effects demonstrate that instruction affects the processing mechanisms. In short, results obtained by Experiment 3 confirm the claim that structured input practice can promote internalisation of the grammatical knowledge which is made available when needed. This effect goes beyond superficial instructional effects which are expected to last only for a short period and decline in the long-term. On the contrary, the effects of structured input practice are longitudinal and last up to six months.

Overall, the main findings from this research project are consistent with previous findings obtained measuring the effects of structured input. They indicate that structured input practice has a positive effect on the way learners process linguistic features (in this case English causative forms) and L2 learners exposed to structured input can then access this information for speech production.

Structured input practice has altered the way in which learners from different L1s (Chinese and Greek) and different ages (school-age and adults) processed input which in turn has affected their developing system. Structured input practice produced a change in the way learners process syntactic structures (English causative forms), and this change appeared to have generated new knowledge which was available for both interpreting and producing language in both sentence and discourse-level tasks.
The findings from the present research project make a number of theoretical and pedagogical contributions to the ongoing debate on the effects of Structured input and Structured Output, which are discussed separately in the two sections below.

7.3. Implications for theory

There are five main theoretical implications of the results obtained in the experimental research reported in this thesis. All of them are discussed in detail in the present section.

Firstly, the results of all three experiments conducted for the present dissertation confirm the key role of structured input as an effective pedagogical intervention designed to alter processing problems such as the First Noun Principle. Within this context, the results contribute directly to the discussion on the crucial role that input processing plays in second language acquisition. The empirical evidence obtained in this research project provides further support to the Input Processing Theory and VanPatten’s second language acquisition model (VanPatten, 1996) which link input processing and the developing system. Structured output only was not successful in bringing about similar effects to those brought about by structured input in interpretation sentence and discourse-level tasks and in the production discourse tasks. Structured output practice could not lead to changes in L2 learners’ developing system. This outcome can be attributed to the fact that structured output practice does not aim at changing the way learners process input and does not provide new intake for the developing system. It might help L2 learners to develop a skill and a language like behavior enough for them to produce form correctly at sentence-level.

Structured input practice aims at helping L2 learners internalise new knowledge. As VanPatten (2015:101) explains “Processing Instruction is focused on
the development of underlying competence or mental representation of language”. When this is achieved learners demonstrate a linguistic ability that surpasses practice effects as learners can access this knowledge for production even if they have never produce the forms during the instructional treatment.

Secondly, the positive effects of both the structured input and the combination (SI +SO) groups indicate that structured input is the causative variable for the change in performance of the groups in all three experiments. The two groups made consistently equal gains, and the only element they had in common was the structured input component. This leads to the following two conclusions: (a) structured input is effective in developing learners’ ability to process input both at sentence and discourse-level; (b) structured input is effective in developing learners’ ability to access and produce that linguistic knowledge at sentence and discourse-level.

Thirdly, the results from this study provide new evidence on the short-term and long-term effects of structured input practice. The effects of both the structure input and the combination (SI +SO) treatments were maintained over a period of three-week (short-term effects) and six months (long-term effects). In contrast, there were no effects for the structured output treatment in sentence-level interpretation and discourse-level interpretation and production tasks. Thereby, no claims for short or long-term effects for the structured output treatment can be made. The only measurement that brought about positive results for this group was the sentence-level production task, and these positive effects were maintained over a three-week period (see figure 6.2). On the other hand, the effects of structured input and the combination of structured input and output (SI+SO) are both durative (three weeks after instruction) and longitudinal (six months after instruction). The descriptive statistics in Table 6.6 and Table 6.7 and the graphs with the results in figure 6.6 and figure 6.7
of Experiment 3, indicate that only the structured input group and the SI+SO groups improved from the second (three weeks’ delayed posttest) to the third posttest (six months’ delayed posttest). Both groups maintained the positive effects six months after instruction. Moreover, the positive effects did not diminish for either the interpretation nor the production discourse-level tasks. These findings are in line with previous findings on long-term effects. Marsden (2006), Agiasophiti (2013) and Kasprowicz and Marsden (2017) found that effects last over time. VanPatten and Fernández (2004) whose design measured effects that lasted up to eight months found that participants’ performance declined, but there was still significant improvement from pretest to posttest performance. In short, results from the present research project support previous findings that indicated that structured input effects are longitudinal (Anderson, 1990; Ellis, 1994 cited in Hulstijn and De Graaf, 1994; VanPatten, 2004; Dekeyser & Prieto Botana, 2014).

Fourthly, the findings from this study lend support to a number of hypotheses formulated within the Processing Instruction research framework (Benati and Lee, 2008: Benati and Lee, 2010). Firstly, the positive results obtained in the present research project with two different age populations, lend support to the so-called Age Hypothesis⁴ (Benati and Lee, 2008:168) “PI will be just as effective an intervention with young learners as it is with older learners”. Indeed, the main results of the present studies confirm that both age groups receiving structured input alone and in combination with structured output performed equally well on both interpretation and production tasks. These positive results lasted up to three weeks (Experiment 1- subjects: adults and Experiment 2- subjects: aged 10-12) and up to six months (Experiment 3- subjects: aged 10-12). The findings in the present research project,

⁴ The Age Hypothesis did not refer directly to the Critical Period Hypothesis, from a neurological point of view participants in both age groups are considered in the “adult” category.
with participants aged 10-12, confirmed previous research conducted among school-age learners (Benati, 2005; Marsden and Chen, 2011; Benati, 2013; Mavrantoni and Benati, 2013; Benati and Angelovska, 2015; Kasprowicz and Marsden, 2017; see also Lee and Benati, 2013 for a review).

Finally, the findings from the present project which use native speakers of other languages than English, also support the so-called Native Language Hypothesis (Benati and Lee, 2008:166) “‘PI will be effective for instilling target language specific processing strategies, no matter the native language of the learners’”. Lee (2015) also noted that the majority of studies conducted within the Processing Instruction framework used native speakers of romance languages (French, Italian, Spanish). However, other empirical studies (Benati, 2005; Lee and Benati with Houghton, 2008; Uludag and VanPatten, 2012; Benati and Angelovska, 2013) used native speakers of non-romance languages (e.g., Chinese and Greek, Korean, Turkish and German). The present study was conducted with participants from a non-romance language. The overall findings of the present study contribute to the generalizability of the *Native Language Hypothesis* by adding Greek and Chinese.

To summarise, the main findings of the present research project support the view that structured input is an effective type of practice in altering the way learners process input. It promotes correct processing and better intake which is then successfully integrated into learners’ developing system. Structured input practice is effective at altering the First Noun Principle, and its effects can be measured at sentence and discourse-level in both interpretation and production tasks.

Its efficacy can have both short and long-term effects with participants from different ages (school-age and adults) and language background (Chinese and Greek).
7.4. Implications for pedagogy

The results of this research project make some contributions for language pedagogy. These implications are fourfold and are discussed in detail in the present section.

Firstly, structured input practice has a significant effect on learners’ developing system than a type of instruction which involves output practice alone. On the whole, the findings from this project reaffirm the importance of structured input activities in language pedagogy. Overall the findings from this study contribute to the view that input practice should precede output practice. Lee and VanPatten (1995) argued that learners should not be pushed to language production before adequate knowledge has been integrated into their developing system through accurate input processing. Focusing on output practice before input practice it is like “putting the cart before the horse” (p.95) when it comes to acquisition. Focusing on output before L2 learners had not the chance to process input does not help the development of the interlanguage system. Output-based practice should be delayed until learners are first process and intake input.

Secondly, the overall results of this research project reassert the role of comprehensible meaning-based input in second language acquisition. In structured input practice, meaning is always in focus. Participants are involved in tasks in which they are expected to respond to the information content of the input. For example, in referential activities learners need to focus on the targeted form or structure to get the meaning conveyed. If they fail to do so, they get immediate feedback that the meaning inferred is wrong. This is the part of the communication that involves interpretation, expression and negotiation of meaning. With structured input practice, we accomplish
two things: (a) exposure to input in a comprehensible and communicative context which does not overload learners’ attentional resources; (b) provide L2 learners with the opportunity to access the developing system to produce the target language.

Thirdly, the results from this research project suggest that because the structured input practice focuses on both meaning and form, it is possible and desirable to have a pedagogical intervention to grammar instruction that incorporates a form and meaning focus. Especially, affective activities help learners link the said structure or form with real-life experiences. In that sense, these types of tasks are a valuable tool in the hands of instructors to achieve genuine communication among learners, which goes beyond form-focused practising in a communicative context. With affective structured input language instructors can turn classrooms into “places where learners talk about real things and learn about each other” (Lee and VanPatten, 2003:72). In short, this effectiveness of structured input instruction may also be attributed to the fact that it provides learners with opportunities for natural communication.

Fourthly, structured input practice did not include any explicit information during the instructional treatment. The findings from the three experiments presented in this thesis show that structured input practice, free from explicit information, has beneficial short and long-term effects on the acquisition of the English causative forms with participants of different ages.

Another limitation of the present research project is the assessment tools used. The project measured the effects of structured input and structured output on the interpretation and production discourse-level tasks. These measurements fail to measure more spontaneous production. With written tasks -even timed ones- there is
always a possibility for some learners to monitor their responses. Thus, although there
was a time limit set in the assessment tasks, there is always some level of uncertainty
on whether absolutely no learner had the time to monitor his/her answers. Moreover,
while the use of online research methods could shed more light on the training effects
during real-time processing, the same cannot be argued for the offline measurements
used in the present study.

7.5 Suggestions for further research

The present research project has made some theoretical and pedagogical
contributions and has also left some open questions for future research.

Firstly, as it has been discussed in the previous section, the instrumentation
used in the present study may have allowed L2 learners to monitor their answers.
Therefore, future research should use different types of measurements. One
suggestion is the use of online measurements to effectively measuring moment-by-
moment language processing.

Secondly, there is a need for more research measuring discourse and long-term
effects of structured input and structured output practice. Future work should
investigate the effects of structured input and output on different linguistic features of
a variety of languages.

Despite the fact that the present research project has excluded the explicit
information component as it is the structured input practice the causative variable of
Processing Instruction, there are two cases where explicit information has helped L2
learners process faster and more accurately the target item under investigation
(Culman et al., 2009; Henry et al., 2009). It remains an open question for research
whether the present study should have included groups with or without explicit information. Therefore, future research should consider the role and effects of structured input and structured output tasks with or without explicit information.

Lastly, more research is needed to structured input practice versus other input-based instructional pedagogical interventions. An open question for future research is the following: what would results be when structured input is compared with other input-based instructional tools?

Overall, the present research project has made a number of contributions which have been discussed in this chapter. However, there are still open questions to be addressed within the Processing Instruction research agenda. An area that merits further investigation (Shintani et al., 2013) is to carry out studies comparing the effects of input-based versus output-based pedagogical interventions and also a combination of input and output practice.

7.6 Conclusion

The main aim of the present thesis was to investigate the relative effects (short and long-terms) of structured input and structured output in isolation and in combination. The ultimate goal was to examine any possible impact these instructional tools may have on language processing and the developing system of the learners and to propose a useful pedagogical tool that facilitates L2 acquisition. For this end, learners’ ability to interpret and produce passive English causative forms was tested measuring learner’s performance on sentence and discourse-level tasks. The English causative form (passive structure) is affected by the First Noun Principle, and it is not present in the participants’ L1 grammatical system. Main findings confirm the key role of structured input in altering learners processing problem (First Noun Principle).
Structured input has an impact on learners’ developing system as this processing training enables L2 learners to access target form for production. Structured output did not bring about similar results. Structured input alone and in combination with structured output serves as a valuable instructional tool that could be used to facilitate the acquisition of grammar.
REFERENCES


Benati, A. & Batziou, M. (2017). The relative effects of isolated and combined structured input and structured output on the acquisition of the English


Jalali, M., & Jafarigohar, M. (2014). The effects of processing instruction, consciousness-raising tasks, and textual input enhancement on intake and


APPENDICES

APPENDIX A: STRUCTURED INPUT: MATERIALS

SCRIPTS FOR THE INSTRUCTORS ONLY (aural activities)

ACTIVITY 2 (referential activity)

1) Jane had her dress mended last Monday
2) Penny repaired the car herself
3) Emma had flowers sent to her boyfriend
4) Mary had the fence painted pink
5) Tom took a driving test
6) Jim had a very loyal dog when he was younger
7) Peter invited everyone to the party
8) Bill had his guitar tuned before the concert
9) John played the game often so he knew the rules well
10) Alex had breakfast served for him and his fiancée

ACTIVITY 3 (Referential activity)

1) Jenny had cleaned the windows before the cleaning lady came.
2) The boy had his bike fixed before the race.
3) Jack had painted the fence before the rainy season began.
4) Alan had already taken a photo before Betty came with her camera.
5) Helen had ironed her red dress because she wanted to wear it at the party.
6) Tom had his dancing shoes repaired before the school dance.
7) Mary had her teeth whitened yesterday.
8) Alex had the tickets for his trip to London booked yesterday.
9) Bob had a party by the pool for his birthday.
10) Mum had gone the bank to pay the bills when dad called.
ACTIVITY 8 (Affective activity)

Mary is a university student who shares a flat with two other students. As you understand there are many chores to be done around the house, but Mary doesn’t do all of them by herself. So last week she went to the supermarket twice, where she bought cereals, milk, rice and cookies among other things. On Tuesday morning she had the groceries delivered. On Wednesday she helped tidying the flat. Also, as Mary is a terrible cook, last week again she had dinner prepared by one of her flat mates. However, she prepared sandwiches for lunch on Thursday. On Friday she had all the clothes ironed and last weekend she had a party organized because it was her roommate’s birthday.

ACTIVITY 1 (Referential with visuals)

Match each picture below to the statement that conveys the same meaning. Pay close attention to the structure of each sentence to understand who is actually performing the action.

1. a) Sandra has her hair done every week.   b) Sandra does her hair every week.
2. a) Mr Hill repairs his car often because it’s old.
   b) Mr Hill has his car repaired often because it’s old.

3. a) Mary cleans her carpets frequently because she is allergic to dust.
   b) Mary has her carpets cleaned frequently because she is allergic to dust.

4. a) Helen always has her car engine checked before driving abroad.
   b) Helen always checks her car engine before driving abroad.
5) a) George cuts the grass every month. b) George has the grass cut every month.

6) a) Emma always dusts the TV. b) Emma always has the TV dusted.

7 a) The boy has changed the bike’s tires. b) The boy has the bike’s tires changed.
ACTIVITY 2 (Aural referential)

Listen to the sentences and answer the questions, you can circle option (C) if you are not sure. Pay careful attention to the structure of each sentence in order to understand who is actually performing the action:

1) Who mended the dress?  a) Jane   b) someone else   c)
2) Who repaired the car  a) Penny    b) someone else   c)
3) Who delivered the flowers?  a) Emma    b) someone else   c)
4) Who got dirty with pink paint?  a) Mary    b) someone else   c)
5) Who took a test?  a) Tom   b) someone else   c)
6) Who had a loyal dog?  a) Jim    b) someone else   c)
7) Who invited all the people to the party?  a) Peter    b) someone else   c)
8) Who tuned the guitar?  a) Bill    b) someone else   c)
9) Who had played the game?  a) John    b) someone else   c)
10) Who served breakfast?  a) Alex    b) someone else   c)
ACTIVITY 3 (Referential with visuals)

Look at the picture below and match them to the statement that conveys the same meaning. Pay close attention to the structure of each sentence or else you might misunderstand who is actually performing the action in each case.

1 Mary had the tickets for their trip to Paris booked on line.       ____
2 Jim had some coffee served at his favourite café before starting planning which sites they would visit in Paris.  ____
3 Mary made a phone call to confirm that her hotel room had been successfully booked.  ____
4 Mary booked the tickets for their trip to Paris on line.  ____
5 Mary had a phone call made to confirm that her hotel room had been successfully booked.  ____
6 Jim had poured some coffee before he started planning which sites they would visit in Paris.  ____
ACTIVITY 4 (Referential aural)

You are going to hear some sentences in English. Match each sentence you hear with one of the statements below.

1. a) Jenny likes to do the chores herself.
   b) Jenny was busy so somebody else cleaned the windows.

2. a) The boy is good at fixing his bike.
   b) The boy took his bike to the mechanic.

3. a) Jack hired a painter to paint the fence
   b) Jack is a good painter so he painted the fence himself.

4. a) Alan went to the photographer’s next to the school.
   b) Alan takes great professional pictures.

5. a) Helen loves that dress she wouldn’t trust anyone with it.
   b) Helen loves that dress so she took it to a professional.

6. a) Tom doesn’t know how to repair shoes.
   b) Tom is a shoemaker so he repaired them himself.

7. a) Mary bought a new teeth whitening device.
   b) Mary went to the dentist yesterday and he whitened them.

8. a) Alex wanted to book them himself to choose a seat by the window.
   b) His friend booked them because she loves organizing trips.

9. a) Bob threw a party for his birthday
   b) Bob asked his friend to throw a party for him on his birthday

10. a) Mum went to the bank to pay the bills last Monday.
    b) Mum asked dad to pay the bills at the bank last Monday.
ACTIVITY 5 (Referential written input)

Read the following statements carefully. Then, write the name of the person who performed the action or tick “someone else” if the person who actually performed the action is not mentioned in the sentence.

1) Mark had his shirts washed.
2) Emma had a salad for lunch.
3) Eric had the fence painted.
4) John had his ears pierced.
5) Bob took a test yesterday.
6) Mary had her car painted pink.
7) Helen had some champagne for her birthday.
8) Tom had eggs for breakfast yesterday.

<table>
<thead>
<tr>
<th>Name</th>
<th>Someone else</th>
<th>Not Sure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Who washed the shirts?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>2) Who ate a salad?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>3) Who painted the fence?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>4) Who pierced John’s ears?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>5) Who took a test?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>6) Who painted Mary’s car</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>7) Who threw a party?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>8) Who ate eggs for breakfast?</td>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>

ACTIVITY 6 (referential written input)

Select the appropriate phrase that correctly completes the meaning of each sentence.

1) Sandra had her bike repaired …
   a) …because she is a good mechanic.
   b) … because she knows nothing about bikes.

2) Jane tuned her piano before the concert….
   a) … she doesn’t trust anyone else with her piano.
   b) … she always asks her sister to tune it for good luck.

3) Tim had his dinner cooked again yesterday…
   a) …he always cooks, he loves cooking.
   b) … he is a terrible cook, he never cooks.

4) John baked a cake yesterday…
   a) … he ordered it from his favourite bakery shop.
   b) … he made it for his daughter’s birthday.

5) Peter had a hotel room booked last Monday…
   a) … he always books the hotels himself.
   b) … he always asks his secretary to organise his trips.

6) Bob had some coffee after lunch…
   a) …because he shouldn’t take caffeine.
   b) … he needed it because he felt very sleepy.
**ACTIVITY 7 (Referential written input)**

Cate Blanchett is a famous actress who starred in a historical movie called “Elizabeth”. She incarnated the life of the queen of England that ruled the country in the 16th century. So she needed to make some changes in her appearance in order to look and feel like the queen, before they started shooting the film. Read the following rumours and choose the sentence that makes more sense as a result of what you read. Pay close attention to the structure of the verb “had” so that you avoid misunderstandings:

1) Cate Blanchett had many wigs made for this movie.
   a) She made the wigs using real hair.
   b) She ordered hand-made wigs of natural hair.

2) She had her hair cut in order to easily wear the wigs.
   a) She cut her own hair because she doesn’t like being touched.
   b) Her personal hairdresser cut her hair because she doesn’t trust any other.

3) She had brushed all the wigs before the shooting of the movie.
   a) She said it was a relaxing chore that kept her busy and focused.
   b) Her assistant really hated having to brush all those wigs.

4) She had her room decorated to look like a queen’s bedroom.
   a) She had to do some research about the 16th century decoration.
   b) She had to hire some experts on the 16th century decoration.

5) She also painted her portrait, all queens have one.
   a) She is a talented painter; she used one of her pictures as model.
   b) She asked a talented painter to do it; she wanted it to look perfect.

6) She hanged her portrait over the fireplace like aristocrats do.
   a) She used a hammer so she was very careful not to hit her fingers.
   b) She asked her boyfriend to hang it because she’s afraid of hammers.

7) She also had her make up changed in order to look and feel like a queen.
   a) She put on red lipstick and white powder on her face everywhere.
   b) She asked the make-up artist to use red lipstick and white powder.

8) Finally, she put on dresses of the 16th century to start feeling more comfortable in them.
   a) She couldn’t button them up so she asked her sister for help.
   b) At first it was hard but then she got used to buttoning herself up.

**ACTIVITY 8 (Referential aural activity)**

Mary’s week.

**Step 1** Break into a group of four and listen as your instructor reads a short narration.

**Step 2** With your group members give as many details as you can remember completing the following statements. The group with the more details wins. You have four minutes.

1. Mary went to the supermarket __________________.
2. She bought ________________________________.
3. She had the grocery delivered __________________.
4. She helped tidying the flat ____________________.
5. She had dinner prepared ______________________.
6. She prepared a sandwich ______________________.
7. She had all the clothes ironed ______________________.
8. She also had a party organized because ________________________.

**Step 3** Look over the details that you have recalled. Read a sentence to the class and then say whether or not you did the same thing.

**ACTIVITY 9 (Affective activity)**

**Step 1** Indicate which of the following things happened to you in real life. Be prepared to share with the class.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I had my vehicle repaired last month.</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>2. I had my hair cut at least once last year.</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>3. I had a great party for my graduation.</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>4. I had my pet fed by a friend many times.</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>5. I ironed all my shirts without anyone’s help.</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>6. I did my homework with a friend at least once last month.</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>7. I had my photo taken by a professional.</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>8. I had my bills paid by a relative.</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>9. I had a new computer for my birthday.</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>10. I had my mobile phone stolen once.</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

**Step 2** As the instructor reads the statements, raise your hand if it is true for you. Someone should keep a record on the board.

**Step 3** Let’s find out now which are the three most popular and the three least popular things to do among our class.

**ACTIVITY 10 (Affective activity)**

How well do you know your instructor?

**Step 1.** Following are some things your instructor might have done last week and in the past. Try to see if you can guess correctly.

During last week my instructor…

1. …. had a big party at home to celebrate her/his birthday
2. … had the students’ tests corrected, she/he was too busy to do it her/himself
3. … cooked lunch at least twice because she/he had lost a bet.
4. … took a big breath before getting into class
5. … had dinner served at least once last week, because she/he likes eating out.
6. … had his/her window broken by some kids playing football in the street

In the past my instructor …

1. … had her/his hair dyed at the hairdresser’s, she/he loves changing styles.
2. … had breakfast prepared, she/he is not really into cooking.
3. … had lied at least once to cover up a friend but she/he doesn’t normally lie.
4. … had played “monopoly” many times, she/he is very good at it.
5. … fell off a tree once and is still afraid of trees.
6. … had his/her clothes ironed every week, because she/he hates ironing.
Step 2 A volunteer will read the statements from step 1 to the rest of the class. Indicate whether you agree or disagree with each statement. In the end, your instructor will tell you and the class if you are right.

Step 3. Now that you know what your instructor did and what she/he had done for him/her. Find at least three things she/he likes doing on her/his own and three things that she/he would definitely ask someone else to do for him/her.
APPENDIX B: STRUCTURED OUTPUT MATERIALS

ACTIVITY 1

Which house chores would you definitely avoid?

Step 1. Indicate which of the following activities you did yourself and which you asked someone else to do for you last week.

Example: “I tidied my room last week but I had my desk dusted by my brother, because I’m allergic to dust.”

<table>
<thead>
<tr>
<th>Chores</th>
<th>Done by myself</th>
<th>Have it done by someone else</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean the windows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mop the floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do the dishes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cook dinner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron the clothes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repair something</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do the laundry</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 2. Using the information from step 1, create a series of questions (maximum 5) to ask your classmate during an interview.

Example: “Did you tidy your room yourself or did you have it tidied by someone else last week?”

Step 3. Interview your classmate. Be sure to write down your classmate’s response because you will need them later.

Step 4. Prepare a set of statements (maximum 5) in which you compare the chores you ask someone else to do for you with the chores your classmate asks someone else to do for him/her using the ideas from step 1,2,3. You will present your results to the class and after you have received feedback from other classmates you will draw some conclusion about which chores are the least popular among the students of your class.
ACTIVITY 2

Step 1. Cate Blanchett is a famous actress who starred in a historical movie called “Elizabeth”. She incarnated the life of the queen of England that ruled the country in the 16th century. So she needed to make some changes in order to look and feel like the queen, before they started shooting the film. Read the following rumours; choose phrases from Column B and match them with phrases on Column A to form sentences which make more sense. You need to transform the words in brackets correctly in order to do the matching:

<table>
<thead>
<tr>
<th>Column A</th>
<th>Column B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Cate Blanchett (make/ many wigs) for this movie.</td>
<td>a) she said it was a relaxing chore that kept her busy and focused before every scene.</td>
</tr>
<tr>
<td>2) She (cut / her hair) in order to easily wear the wigs.</td>
<td>b) she had to hire some experts on the 16th century decoration</td>
</tr>
<tr>
<td>3) She (brush/ all the wigs) before the shooting of the movie.</td>
<td>c) She used a hammer so she was very careful not to hit her fingers.</td>
</tr>
<tr>
<td>4) She (decorate/ her room) so that it looked like a queen’s bedroom.</td>
<td>d) She asked the make-up artist to use red lipstick and white powder.</td>
</tr>
<tr>
<td>5) She also (paint/ her portrait), all queens have one.</td>
<td>e) At first it was hard but then she got used to buttoning herself up</td>
</tr>
<tr>
<td>6) She (hang/ her portrait) over the fireplace like aristocrats do.</td>
<td>f) she ordered more than twenty handmade wigs of natural hair.</td>
</tr>
<tr>
<td>7) She also (change/ make up) in order to look and feel like a queen.</td>
<td>g) She is a talented painter; she used one of her pictures as model.</td>
</tr>
</tbody>
</table>
8) she (put on/ dresses of the 16th century) to start feeling more comfortable in them
h) her personal hairdresser cut her hair because she doesn’t trust anyone else

a) _______________________________________________________________

b) _______________________________________________________________

c) _______________________________________________________________

d) _______________________________________________________________

e) _______________________________________________________________

f) _______________________________________________________________

g) _______________________________________________________________

h) Finally, _________________________________________________________

Step 2. Using the scale below, indicate how probable you think these rumours are. Be prepared to share with the rest of the class.

<table>
<thead>
<tr>
<th>Not at all probable</th>
<th>probably</th>
<th>definitely true</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Step 3. Compare and contrast your answers to those of your partner. How many do you coincide?

Step 4. Prepare a set of statements which you believe that are definitely true (maximum 2) and not at all probable (maximum 2). Present them to the rest of the class. After you have received feedback from the rest of the class you should be able to decide which rumour is the one that our class thinks to be definitely true and which one is the least believable by our class. Remember that someone should keep a record.

ACTIVITY 3

Are you an indoor or outdoor type?

Step 1. Write at least six indoor chores that you had to do last week. Indicate how many you did yourself and how many you had done by someone else.

Example: “I did the dishes but I had my clothes ironed, I hate ironing”

Step 2. Write at least six outdoor chores that you had to do last week. Indicate how many you did yourself and how many you had done by someone else.

Example: “I walked the dog but I had the bills paid at the bank, I hate queues”

Step 3. Now present your sentences to a partner. Your partner will subsequently present his/her sentences to you. Compare and contrast similarities and differences.
Step 4. Present your results to the rest of the class and all together fill in a grid based on what was said. Now you can indicate whether you and your classmates prefer indoor or outdoor chores.

**ACTIVITY 4**

Step 1. Mary and Jim had to organise their trip to Paris. Here are some pictures showing two versions of each action. Complete the sentences below using the words in brackets so that they convey the same meaning with their corresponding picture. Then, check with your instructor to see if you got it right.

A B

1 A) Mary …………………………… (make/a phone call) to confirm that her hotel room had been successfully booked.
1 B) Mary …………………………… (make/a phone call) to confirm that her hotel room had been successfully booked.

2 A) Jim ………………………………… (pour/some coffee) before he started planning which sites they would visit in Paris.
2 B) Jim ………………………………… (serve/some coffee) at his favourite café before starting planning which sites they would visit in Paris.

3 A) Mary ………………………………. (book/the tickets) for their trip to Paris on line.
3 B) Mary ………………………………. (book/the tickets) for their trip to Paris on line.

Step 2. Write down at least eight things that you have to do when you are organizing a trip abroad. How many of them do you do yourself and how many do you ask someone else to do for you?
Step 3. Prepare a set of questions (maximum 6) and interview a partner about what things s/he does or what s/he has done for him/her when they organize a trip abroad. Compare and contrast your answers. In how many do you coincide?

Step 4. Now present your answers to the rest of the class. After receiving feedback, decide the three most popular things that people do when organizing a trip abroad.

ACTIVITY 5

How well do you know your instructor?

Step 1. Write at least five things that you believe your instructor definitely did himself/herself last month. You can either be imaginative and creative or you can play it safe as in the following example.

Example: “My instructor prepared a test for us last week.”

Step 2. Write at least five things that you believe your instructor had them done for him/her last month.

Example: “My instructor had his/her car washed at least once last month.”

Step 3. Compare and contrast your answers to those of your classmate. How many similar statements do you have?

Step 4. Now ask your instructor to find out how close to the truth you are. According to his/her answers indicate on the following scale how well you know your instructor.

Not at all well pretty well

1 2 3 4 5

ACTIVITY 6

The ideal flat mate.

Step 1. Write at least five chores that you like doing and you always volunteer to do around the house.

Example: “I always take the dog for a walk. I never miss a chance to take a stroll at the park.”

Step 2. Write at least five chores that you hate doing and you would never miss a chance to have them done by someone else.

Example: “I always have the dishes done by my partner. I hate this chore.”

Step 3. Now present your sentences to a partner. Your partner will subsequently present his/her sentences to you. Compare and contrast similarities and differences. Are you a compatible pair? Could you be ideal flat mates?

Step 4. Make a grid on the board, a volunteer should fill it out based on what was said (things I do myself vs things I ask someone else to do for me). Now it’s highly possible that you can all find the ideal flat mate in our classroom. Present him or her to the class and explain why you think he or she would be an ideal flat mate for you.
APPENDIX C: STRUCTURED INPUT AND STRUCTURED OUTPUT MATERIALS

SCRIPTS FOR THE INSTRUCTORS ONLY (aural activities)

ACTIVITY 2

11) Jane had her dress mended last Monday
12) Penny repaired the car herself
13) Emma had flowers sent to her boyfriend
14) Mary had the fence painted pink
15) Tom took a driving test
16) Jim had a very loyal dog when he was younger
17) Peter invited everyone to the party
18) Bill had his guitar tuned before the concert
19) John played the game often so he knew the rules well
20) Alex had breakfast served for him and his fiancée

ACTIVITY 5

Mary is a university student who shares a flat with two other students. As you understand there are many chores to be done around the house but Mary doesn’t do all of them by herself. So last week she went to the supermarket twice, where she bought cereals, milk, rice and cookies among other things. On Tuesday morning she had the groceries delivered. On Wednesday she helped tidying the flat. Also, as Mary is a terrible cook, last week again she had dinner prepared by one of her flat mates. However, she prepared a sandwich for lunch on Thursday. On Friday she had all the clothes ironed and last weekend she had a party organized because it was her roommate’s birthday.

ACTIVITY 1 (Referential SI activity with visuals)

Match each picture below to the statement that conveys the same meaning. Pay close attention to the structure of each sentence in order to understand who is actually performing the action.

1. a) Sandra has her hair done every week. b) Sandra does her hair every week.
2. a) Mr Hill repairs his car often because it’s old.
b) Mr Hill has his car repaired often because it’s old.

3) a) Mary cleans her carpets frequently because she is allergic to dust.
b) Mary has her carpets cleaned frequently because she is allergic to dust.

4) a) Helen always has her car engine checked before driving abroad.
b) Helen always checks her car engine before driving abroad.
5) a) George cuts the grass every month.  
   b) George has the grass cut every month.

6) a) Emma always dusts the TV.  
       b) Emma always has the TV dusted.

7) a) The boy has changed the bike’s tires.  
     b) The boy has the bike’s tires changed.
ACTIVITY 2 (Referential SI aural activity)

Listen to the sentences and answer the questions. Pay careful attention to the structure of each sentence in order to understand who is actually performing the action:

3) Who mended the dress? a) Jane b) someone else c) Not Sure
4) Who repaired the car? a) Penny b) someone else c) Not Sure
5) Who delivered the flowers? a) Emma b) someone else c) Not Sure
6) Who got dirty with pink paint? a) Mary b) someone else c) Not Sure
7) Who took a test? a) Tom b) someone else c) Not Sure
8) Who had a loyal dog? a) Jim b) someone else c) Not Sure
9) Who invited all the people? a) Peter b) someone else c) Not Sure
10) Who tuned the guitar? a) Bill b) someone else c) Not Sure
11) Who had played the game? a) John b) someone else c) Not Sure
12) Who served breakfast? a) Alex b) someone else c) Not Sure
ACTIVITY 3 (Referential SI activity)

Look at the picture below and match them to the statement that conveys the same meaning. Pay close attention to the structure of each sentence to understand who is actually performing the action in each case.

1 Mary had the tickets for their trip to Paris booked on line. _____
2 Jim had some coffee served at his favourite café before starting planning which sites they would visit in Paris. _____
3 Mary made a phone call to confirm that her hotel room had been successfully booked. _____
4 Mary booked the tickets for their trip to Paris on line. _____
5 Mary had a phone call made to confirm that her hotel room had been successfully booked. _____
6 Jim had poured some coffee before he started planning which sites they would visit in Paris. _____
ACTIVITY 4 (Referential SI activity)

Read the following statements carefully. Then, write the name of the person who performed the action or tick “someone else” if the person who actually performed the action is not mentioned in the sentence or ‘Not Sure’ if you can’t understand.

1) Mark had his shirts washed.
2) Emma had a salad for lunch.
3) Eric had the fence painted.
4) John had his ears pierced.
5) Bob took a test yesterday.
6) Mary had her car painted pink.
7) Helen had some champagne for her birthday.
8) Tom had eggs for breakfast yesterday.

<table>
<thead>
<tr>
<th>Name</th>
<th>Someone else</th>
<th>Not Sure</th>
</tr>
</thead>
<tbody>
<tr>
<td>9) Who washed the shirts?</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>10) Who ate a salad?</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>11) Who painted the fence?</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>12) Who pierced John’s ears?</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>13) Who took a test?</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>14) Who painted Mary’s car</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>15) Who threw a party?</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>16) Who ate eggs for breakfast?</td>
<td>___</td>
<td>___</td>
</tr>
</tbody>
</table>

ACTIVITY 5 (Referential SI activity)

Mary’s week.

Step 1 Break into a group of four and listen as your instructor reads a short narration.

Step 2 With your group members give as many details as you can remember to complete the following statements. The group with the more details wins. You have five minutes.

1. Mary went to the supermarket ____________________.
2. She bought ________________________________.
3. She had the groceries delivered ____________________.
4. She helped tidying the flat ____________________.
5. She had dinner prepared ____________________.
6. She prepared a sandwich ____________________.
7. She had all the clothes ironed ____________________.
8. She also had a party organized because ____________________.

Step 3 Look over the details that you have recalled. Read a sentence to the class and then say whether or not you did the same thing.
ACTIVITY 6 (SO activity)
The ideal flat mate.

Step 1. Write at least five house works that you like doing and you always volunteer to do.

Example: “I always take the dog for a walk. I never miss a chance to take a stroll at the park.”

Step 2. Write at least five house works that you hate doing and you would never miss a chance to have them done by someone else.

Example: “I always have the dishes done by my partner. I hate this chore.”

Step 3. Now present your sentences to a partner. Your partner will subsequently present his/her sentences to you. Compare and contrast similarities and differences. Are you a compatible pair? Could you be ideal flat mates?

Step 4. Make a grid on the board, a volunteer should fill it out based on what was said (things I do myself vs things I ask someone else to do for me). Now it’s highly possible that you can all find the ideal flat mate in our classroom. Present him or her to the class and explain why you think he or she would be an ideal flat mate for you.

ACTIVITY 7 (SO activity)

Step1. Cate Blanchett is a famous actress who starred in a historical movie called “Elizabeth”. She incarnated the life of the queen of England that ruled the country in the 16th century. So she needed to make some changes in order to look and feel like the queen, before they started shooting the film. Read the following rumours; choose phrases from Column B and match them with phrases on Column A to form sentences which make more sense. You need to transform the words in brackets correctly in order to do the matching:

<table>
<thead>
<tr>
<th>Column A</th>
<th>Column B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Cate Blanchett (make/ many wigs) for this movie.</td>
<td>a) she said it was a relaxing chore that kept her busy and focused before every scene.</td>
</tr>
<tr>
<td>2) She (cut / her hair) in order to easily wear the wigs,</td>
<td>b) she had to hire some experts on the 16th century decoration</td>
</tr>
<tr>
<td>3) She (brush/ all the wigs) before the shooting of the movie.</td>
<td>c) She used a hammer so she was very careful not to hit her fingers.</td>
</tr>
<tr>
<td>4) She (decorate/ her room) so that it looked like a queen’s bedroom.</td>
<td>d) She asked the make-up artist to use red lipstick and white powder.</td>
</tr>
<tr>
<td>5) She also (paint/ her portrait), all queens have one.</td>
<td>e) At first it was hard but then she got</td>
</tr>
</tbody>
</table>
used to buttoning herself up

6) She (hang/h her portrait) over the fireplace like aristocrats do.

7) She also (change/make up) in order to look and feel like a queen.

8) She (put on/dresses of the 16th century) to start feeling more comfortable in them

f) she ordered more than twenty hand-made wigs of natural hair.

g) She is a talented painter; she used one of her pictures as model.

h) her personal hairdresser cut her hair because she doesn’t trust anyone else

1) _____________________________________________________________

2) ______________________________________________________________

3) ______________________________________________________________

4) ______________________________________________________________

5) ______________________________________________________________

6) ______________________________________________________________

7) ______________________________________________________________

8) ______________________________________________________________

Step 2. Using the scale below, indicate how probable you think these rumours are. Be prepared to share with the rest of the class.

<table>
<thead>
<tr>
<th>Not at all probable</th>
<th>probable</th>
<th>definitely true</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Step 3. Compare and contrast your answers to those of your partner. How many do you coincide?

Step 4. Prepare a set of statements which you believe that are definitely true (maximum 2) and not at all probable (maximum 2). Present them to the rest of the class. After you have received feedback from the rest of the class you should be able to decide which rumour is the one that our class thinks to be definitely true and which one is the least believable by our class. Remember that someone should keep a record.

ACTIVITY 8 (SO activity)

How well do you know your instructor?

Step 1. Write at least five things that you believe your instructor definitely did himself/herself last month. You can either be imaginative and creative or you can play it safe as in the following example.

Example: “My instructor prepared a test for us last week.”

Step 2. Write at least five things that you believe your instructor had them done for her last month.

Example: “My instructor had his/her car washed at least once last month.”

Step 3. Compare and contrast your answers to those of your classmate. How many similar statements do you have?

Step 4. Now ask your instructor to find out how close to the truth you are. Indicate on the following scale how well you know your instructor based on his/her answers.

<table>
<thead>
<tr>
<th>Not at all</th>
<th>well</th>
<th>pretty well</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
APPENDIX D: SENTENCE-LEVEL INTERPRETATION TASKS

VERSION A (Instructor’s script)

Interpretation task:
For each sentence, write who performed the action described. You must write either the NAME of the agent (if it’s mentioned), or tick Someone Else (if the name of the agent is not mentioned) you could also opt for “NOT SURE” if you can’t really tell who the agent is.

Warm up 1-3

1) Bill borrowed a book from Peter.
2) Mary called a taxi for Emma.
3) Steven had baked a cake for his birthday.

4) Peter had the garage cleaned before the trip. (Target Item)
5) Alice cooked last night’s dinner.
6) John had the fence painted black and white. (Target Item)
7) James had pancakes for breakfast.
8) Bill had the car repaired yesterday. (Target Item)
9) John had already invited Tim to the party.
10) Jane walked the dog in the park.
11) Mark had all his bills paid last Monday. (Target Item)
12) Tim had the bike fixed for the race. (Target Item)
13) Frank was thrown into the pool by Peter at the party.
14) Ms. Smith had the grass cut this morning. (Target Item)
15) Lisa had the bathroom floor mopped twice. (Target Item)
16) Beth had the old red dress mended. (Target Item)
17) Eva had some flowers planted in her garden. (Target Item)
18) James injured Steve during the game.
19) Alan bought another coat.
20) Mia had the wedding party planned. (Target Item)
SENTENCE-LEVEL INTERPRETATION TASK

VERSION A (Students’ paper)
NAME: __________
DATE: __________

For each sentence you are going to hear write who performed the action described in the sentence. You must write either the NAME of the person performing the action, or tick “SOMEONE ELSE” or “NOT SURE” if you can’t tell.

<table>
<thead>
<tr>
<th>Sentence</th>
<th>NAME</th>
<th>Someone else</th>
<th>NOT SURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Who borrowed a book?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>2) Who called a taxi?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>3) Who baked a cake?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>4) Who cleaned the garage?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>5) Who cooked dinner?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>6) Who painted the fence?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>7) Who had pancakes?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>8) Who repaired the car?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>9) Who invited somebody?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>10) Who walked the dog?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>11) Who paid the bills?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>12) Who fixed the bike?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>13) Who ended up in the pool?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>14) Who cut the grass?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>15) Who mopped the bathroom?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>16) Who mended the old dress?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>17) Who planted the flowers?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>18) Who injured somebody?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>19) Who bought a coat?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>20) Who planned the wedding?</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
</tbody>
</table>
SENTENCE-LEVEL INTERPRETATION TASKS

Version B (instructor’s script)

For each sentence, write who performed the action described. You must write either the NAME of the agent (if it’s mentioned), or tick Someone Else (if the name of the agent is not mentioned) you could also opt for “NOT SURE” if you can’t really tell who the agent is.

Warm up 1-3

1) Bill borrowed a book from Peter.
2) Mary called a taxi for Emma.
3) Steven had baked a cake.
   4) Peter had the room cleaned after the party. (Target Item)
   5) John had the house painted white and green. (Target Item)
   6) Bill had the bike repaired yesterday. (Target Item)
7) Alex was asked by Mary to the dance.
8) James had a chicken sandwich for lunch.
9) Emma had the new bed carried to her flat. (Target Item)
10) Alan bought another book.
11) Beth had the old shirt mended. (Target Item)
12) Mia had the family holiday organised by Sara. (Target Item)
13) Frank was pushed by Peter into the lake.
14) Mark had Carol pay the bill at the restaurant.
15) Lisa had the kitchen floor mopped twice. (Target Item)
16) Tim had the car fixed for the race. (Target Item)
17) Ms. Smith had some flowers cut this morning. (Target Item)
18) Bob fed the cat while I was away.
19) Maria had the Christmas tree decorated. (Target Item)
20) Jim was kicked by Steve at the beach.
**SENTENCE-LEVEL INTERPRETATION ASSESSMENT TASKS**

**VERSION B (students’ paper)**

Name: __________________________
Date: ____________________________

For each sentence you are going to hear write who performed the action described in the sentence. You must write either the NAME of the person performing the action, or tick “SOMEONE ELSE” or “NOT SURE” if you can’t tell.

<table>
<thead>
<tr>
<th></th>
<th>NAME</th>
<th>Someone Else</th>
<th>NOT SURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Who borrowed a book?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Who called a taxi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Who baked a cake?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Who cleaned the room?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Who painted the house?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Who repaired the bike?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Who made the invitation?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Who had a chicken sandwich?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Who carried the new bed?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Who bought another book?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Who mended the old shirt?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Who organised the holiday?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Who got wet?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Who paid the bill?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Who mopped the floor?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Who fixed the car?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Who cut the flowers?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Who fed the cat?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Who decorated the Christmas tree?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Who injured somebody?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SENTENCE-LEVEL INTERPRETATION ASSESSMENT TASKS

Version C (Instructor’s script)

For each sentence, write who performed the action described. You must write either the NAME of the agent (if it’s mentioned), or tick Someone Else (if the name of the agent is not mentioned) you could also opt for “NOT SURE” if you can’t really tell who the agent is.

Warm up 1-3

1) Bill borrowed a book from Peter.
2) Mary called a taxi for Emma.
3) Alice baked a cake
4) Emma had the garden cleaned after the party. (Target Item)
5) Alan had the chairs painted light blue. (Target Item)
6) Bob had the car repaired yesterday. (Target Item)
7) Alice asked George a question.
8) Jane had a tuna salad for lunch.
9) Mia had the new table carried to her flat. (Target Item)
10) Peter bought another bed.
11) Fred had the old door mended. (Target Item)
12) Josh had the business trip planned by Rachel. (Target Item)
13) Monica had her red dress ironed. (Target Item)
14) Lisa watered the plants more often in the summer.
15) Tom mopped the restaurant floor twice.
16) Jim had the T.V. fixed that day to watch the game. (Target Item)
17) Mr Brown had some trees cut this morning. (Target Item)
18) John was kissed by Mary at the park.
19) Roxanne decorated the restaurant for the party.
20) Chris had his tires changed before the trip. (Target Item)
## Sentence-Level Interpretation Assessment Tasks

### Version C (students’ paper)

**Name:** ___________________

**Date:** ____________________

For each sentence you are going to hear write who performed the action described in the sentence. You must write either the NAME of the person performing the action, or tick “SOMEONE ELSE” or “NOT SURE” if you can’t tell.

<table>
<thead>
<tr>
<th>NAME</th>
<th>Someone Else</th>
<th>NOT SURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Who borrowed a book?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>2) Who called a taxi?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>3) Who baked a cake?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>4) Who cleaned the garden?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>5) Who painted the chairs?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>6) Who repaired the car?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>7) Who asked a question?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>8) Who had a tuna salad?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>9) Who carried the table?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>10) Who bought a bed?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>11) Who mended the door?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>12) Who planned the trip?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>13) Who ironed the dress?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>14) Who watered the plants?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>15) Who mopped the floor?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>16) Who fixed the T.V.?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>17) Who cut the trees?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>18) Who kissed somebody?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>19) Who decorated the restaurant?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>20) Who got dirty from changing the tires?</td>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>
APPENDIX E: Sentence-level Production Tasks
Version A
Name: ______________________________________
Date: _______________________________________ 

Complete the second phrase in each of the following scripts so that it has exactly the 
same meaning as the previous one. You will have to use the words in the parentheses 
to make any necessary changes but NOT just them. DO NOT erase any word.

1) Mark never tidies his room. He always asks someone else to tidy it for him. 
Yesterday, again, Mark had ________________________________ . (tidy, 
room) Target Item

2) Mary has to make a long trip with her car. So yesterday she went to the gas station 
and she had ________________________________ (fill, car) with petrol. 
Target Item

3) Mrs. Brown was not feeling well. Her husband took her to the hospital. The doctor 
took her blood pressure before that he had ________________________________ . 
(examine, heart)

4) Ms. Smith was ill and couldn’t go to the supermarket yesterday, so she had 
_______________________________. (deliver, grocery) Target Item

5) Alan always asks for help when he needs something. Yesterday, he broke his hand 
and couldn’t do his homework. Therefore, he had ________________________________ . 
(do, homework) Target Item

6). Paul doesn’t know how to paint. However, his room needed painting. So, 
yesterday, he had _________________________________. (paint, room) Target Item

7) Ms. Brown is a great cook. She wanted to have a cake for her husband’s birthday 
party. So, she had ________________________________ (bake, cake) before the party.

8) John’s house needed some repairs, but he is not good at fixing things. He called 
Jim, who is a builder and asked for his help. John had ________________________________ . 
(repair, house) Target Item

9) Mary’s hair was too long. She wanted it shorter for the summer. Yesterday, she 
grew to the hairdresser’s and she had _________________________________. (cut, hair) 
Target Item

10) My teacher knows a lot of things but the other day a student 
had______________________________(ask, question) that she was able to answer only after a 
couple of days.
Complete the second phrase in each of the following scripts so that it has exactly the same meaning as the previous one. You will have to use the words in the parentheses to make any necessary changes but NOT just them. DO NOT erase any word.

1) Mary never irons her shirts. She always asks Jane to iron them for her. Yesterday, again, Mary had ______________________________________by Jane. (iron, shirts) Target Item

2) Jason has to drive to France. His car’s tires are very old. So yesterday he had _______________________________________ (change, tires). Target Item

3) Ms. Brown wanted to have a big dinner for her husband’s birthday party. She is a terrible cook, so she called a professional and had __________________________ . (cook, dinner) Target Item

4) Mr. Brown is a famous engineer. Many employers want him. Before he even finished his studies he had _______________________________________ (sign, a contract) with a big company.

5) Mia broke her arm and couldn’t do the dishes. She always asks Eric for help when she needs something. This time, again, Mia had _________________________ by Eric (wash, dishes). Target Item

6) Jack’s trousers needed mending. Jack doesn’t like doing things on his own. Yesterday, he had_____________________________________. (mend, trousers) Target Item

7) Mary had to go to a wedding. She wanted to look beautiful, so she went to a beauty salon and she had _____________________________________. (polish, nails) Target Item

8) Bill’s stomach was hurting. His mother took him to the doctor. The doctor had_______________________________________ before she examined his stomach. (take, pulse)

9) The roof at Mark’s house was very old. Mark hates repairs, so he asked Mr. Jones, the builder, to replace the roof. Mark had ____________________________ . (replace, roof) Target Item

10) I am sure that Jim wasn’t hungry when he came to the party. I know he had _____________________________________ (eat /salad) at work earlier.
Complete the second phrase in each of the following scripts so that it has exactly the same meaning as the previous one. You will have to use the words in the parentheses to make any necessary changes but NOT just them. DO NOT erase any word.

1) Mark never mends his socks. He always asks Jim to mend them for him. Yesterday, again, Mark had __________________________ by Jim. (mend, socks) **Target Item**

2) Bill has to drive to Lamia. His car’s brakes are very old. So yesterday he had __________________________ (change, brakes). **Target Item**

3) Peter broke his leg and couldn’t do the shopping. He had to ask his friends for help. He knows he can count on them. So Peter had __________________________. (do, the shopping) **Target Item**

4) Ms White is great at gardening they all agree that she has green fingers. She had __________________________ which bloomed last spring and the whole neighbor smelled great at nights. (plant, jasmine tree)

5) The fence at George’s house was very old. George hates repairs, so he asked a builder to do it. George had __________________________. (repair, fence) **Target Item**

6) Fay had been unemployed for months. Yesterday she was asked to pay all her bills. So she realised that she had________________________ immediately. (find, job) **Target Item**

7) Mary had to go to a wedding. She wanted to look beautiful, so she went to the hairdresser’s and she had __________________________. (do, hair) **Target Item**

8) Mia’s throat was sore. Her mother took her to the doctor. The doctor had __________________________ before he looked at her throat. (examine, ears)

9) Betty had a terrible toothache. She decided to go to the dentist, it seems that her tooth needed filling, so she had __________________________. (fill, tooth) **Target Item**

10) Bob had to go to a job interview but his suit needed to be ironed. He took it to the dry cleaners and he had __________________________ (iron, suit). **Target Item**
APPENDIX F: DISCOURSE-LEVEL INTERPRETATION TASKS

Instructor’s script
VERSION A
(Corresponding pages on students’ test: 2-5)

Jack’s trip to Athens

Segment 1 (pictures:1-5, page:3)

Jack had to go on a business trip to Athens. He liked trips, so he had some coffee poured and started organising it. He had his plane tickets booked. He didn’t have to book a hotel room as he was staying at a friend’s house. Then he started packing. He had his clothes ironed, and he put them into his luggage. He had previously made a list of the things he had to take with him so as not to forget anything. After he had checked every item on his list, he was ready to go. He got in a taxi and went to the airport.

Segment 2 (pictures:6-10, page:4)

On the plane, he met a strange girl. They had a long conversation during the trip. She told him that she had her hair dyed every month in a different colour because she liked changes. He said that he also had his hair trimmed every month. They had more things in common. They both liked football, he was a Real Madrid follower, but she supported Barcelona. Nevertheless, they continued talking, and they had some coffee. Jack had a terrible headache so he took a painkiller. He had a nap. and before he knew it, they had arrived in Athens. He had his luggage carried to the taxi lane.

Segment 3 (pictures:11-15, page:5)

Next, he took a taxi to his friend house. His friend had dinner prepared for them, they ate, and they went to bed. The next day Jack had breakfast served; then he had a chat with his friend to catch up on their lives. However, Jack didn’t have much time, so he left early. He had a long meeting with his colleagues; he presented them his ideas and listened carefully to their proposals to discuss them later on. He also had some photocopies made which came at handy during the meeting. Then late that evening he went back to his friend’s house. He had some sleep, and early next morning he took a flight back home.
VERSION A
DISCOURSE INTERPRETATION TASK

NAME: _________________________________
1. a) SURE
   b) 
   c) NOT

2. a) 
   b) 
   c) NOT SURE

3. a) 
   b) 
   c) NOT SURE

4. a) 
   b) 
   c) NOT SURE

5. a) 
   b) 
   c) NOT SURE
Jane’s party

Segment 1 (pictures:1-5, page:9)

Jane used to be a very sociable university student. She always had friends over, and she organized the most amazing parties. The best party she had ever had was on her twentieth birthday. She decorated the house the previous day. She had beautiful flowers bought and she had a chocolate cake made. On the day of the party, she also made lots of sandwiches. When her best friend Ellen arrived, Jane had the refreshments put in the fridge to keep them cool. She also arranged the CDs in the order they would be played. Last, she had a shower and got dressed.

Segment 2 (pictures:6-10, page:10)

John was the first to arrive, and he had bought some flowers for Jane. She put all the flowers together and then she had them arranged in different vases. As it was a shiny summer day, she would have the party outdoors. Jane had some tables carried out in the garden, and she had beautiful tablecloths set on them. Then she put the vases in the middle of each table. She also placed some chairs out in the garden for the guests to sit on.

Segment 3 (pictures: 11-15, page:11)

The party started, and she had her favourite music played all night long. Everybody was dancing, and she had lots of fun. When it was late at night she had the music turned down, she turned off the lights and brought the cake, she had twenty candles lit on it, and she made a wish as she blew them. After a while, the guests started leaving. John and Ellen helped Jane tidy up. John carried the chairs and the tables into the house and Ellen did the dishes. Jane thanked them both and went to bed to get some goodnight’s sleep.
VERSION B

DISCOURSE INTERPRETATION TASK

NAME: ________________________________________
Jane's Party

Jane

Ellen

John
Penny’s wedding party

Segment 1 (pictures 1-5, page 14)

Penny was getting married, and she had many things to organise before the wedding. Firstly, she had to plan the party. She and her fiancée found a nice place near the sea for their wedding party, and she had it booked the previous day. Then, she had to choose the decoration. She loved roses, so she had bouquets of white roses placed on every table. She had beautiful white candles lit around the dance floor. She had decided to book her favourite band for that evening. Although she was a terrible dancer, she would have a go at dancing just this one special night.

Segment 2 (pictures: 6-10, page 15)

Then she had to send the invitations. She had them all written on paper that looked old, and she had them all posted one month before the wedding. She also had enclosed a map to the place that the party would be held. She also had to decide on her hairstyle for that day. She tried lots of different styles, and finally, she decided to wear it all up. She also had her nails polished white as this was a safe choice. She had a feeling that everything would go well if she did most of the things traditionally. So she also played it safe with the wedding cake and chose the white one with the roses instead of the blue with the shells.

Segment 3 (pictures 11-15, page 16)

Next, she had to decide on the clothes. Firstly, her wedding dress which she had it designed inspired by the sea. It was a long white dress which had the shape of a mermaid’s tail. Next, she chose the groom’s tuxedo. It was black, so she matched perfectly with a white silk shirt. She had the tuxedo made by a very famous designer. She had chosen the maids’ dresses to be light blue, and she had them all delivered to the maids’ houses. The wedding was perfect as was the party. The singer of the band sang her favourite song and after that everyone danced to the great music. That was the best day of her life.
VERSION C
DISCOURSE INTERPRETATION TASK

NAME: _________________________________
1. a) [Image]
   
   b) [Image]
   
   c) NOT SURE

2. a) [Image]
   
   b) [Image]
   
   c) NOT SURE

3. a) [Image]
   
   b) [Image]
   
   c) NOT SURE

4. a) [Image]
   
   b) [Image]
   
   c) NOT SURE

5. a) [Image]
   
   b) [Image]
   
   c) NOT SURE
**DISCOURSE-LEVEL INTERPRETATION TASKS**

**Instructor’s script**  
**VERSION D**  
(Corresponding pages on students’ test: 13-16)

**John’s birthday party**

Segment 1 (pictures 1-5, page 14)  
Last July it was John’s birthday, and his wife Mary wanted to organise a surprise party for him. To do that, she asked the help of her friends. First, she made a list of the things she had to do. Then, she had the cake made. Also, she had a new jacket made for John. That was his first birthday present. The second was that she had booked John’s favourite band to play music at the party. For herself, she had a new dressed designed. She wanted to look beautiful on that special day.

Segment 2 (pictures: 6-10, page 15)  
Then she had to send the invitations. She had written most of them on paper and then she had them posted on the same day. She sent the rest of the invitations by email. The next thing on her list was to do some shopping. First, she bought the drinks for the party. Also, she had some flowers bought. Then, she had the drinks put into the fridge to be cold on the day of the party. Finally, she prepared some extra sandwiches to make sure that there would be enough food.

Segment 3 (pictures 11-15, page 16)  
On the day of the party, there wasn’t much left to do. Firstly, she did something for herself, she had her hair done. She looked beautiful. Then she got back to doing things about the party, so she started decorating the house. She arranged the flowers in small bouquets, and she had them put on the tables. Then, she had candles lit to create a beautiful atmosphere. John was very surprised with the party. All their friends came, and they had great fun. The last surprise of the party was Mary who sang John’s favourite song. It was the first time he enjoyed that song so much!
VERSION D
DISCOURSE INTERPRETATION TASK

NAME: __________________________________________
6. a)  
   b)  
   c) NOT SURE

7. a)  
   b)  
   c) NOT SURE

8. a) Mary  
   b)  
   c) NOT SURE

9. a) Mary  
   b)  
   c) NOT SURE

10. a) Mary  
    b)  
    c) NOT SURE
APPENDIX G: DISCOURSE-LEVEL PRODUCTION TASKS

Version A (instructor’s script)

You will hear a story once. It will also be projected on the whiteboard when the projector will be turned off, and we will be asked to re-write it with the help of the prompts provided to you. You have also been given some words; please, write their definition before the story begins. If you still have unknown words in the following story, you can ask your instructor after the end of it.

«Elena is pregnant; in a couple of months, she is going to have a baby daughter. Yesterday, she finished decorating her daughter’s room, but as she wasn’t able to do much herself, she had asked the help of her husband and friends.

She had the walls painted pink because she always thought that pink is the perfect colour for girls. Also, she hanged some pictures of castles and princesses on the walls. She had the wooden floor polished, and chose a soft white carpet for this room. She had her favourite armchair moved into the baby’s room where she would feed her. She also had a bed built for the baby, and she decorated it with stuffed animals and other toys. Finally, as her baby daughter will mostly look at the ceiling the first months, she thought that it would be a nice idea to make it look beautiful, so she had the sky painted on it. It is a very pretty room!» (Target items are in red)
Discourse-level production task

VERSION A

NAME: _________________________________

Give the definitions of the following words, before listening to the story. Ask your instructor for help if you need any.

Pregnant=
Decorate a room=
Paint=
Hang pictures=
Move into=
Build a bed=
Feed=
Wooden=

armchair=
Polish the floor=
Ceiling=

«Elena is pregnant; in a couple of months she is going to have a baby daughter. Yesterday, she finished decorating her daughter’s room, but as she wasn’t able to do much herself, she had asked the help of her husband and friends.

She____________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________

____
1. Paint
2. Hang
3. Choose
4. Move
5. Feed
6. Build
7. Polish
8. Decorate
9. Paint
Discourse-level production tasks

Version B (instructor’s script)

You will hear a story once. It will also be projected on the whiteboard when the projector will be turned off, and we will be asked to re-write it with the help of the prompts provided to you. You have also been given some words; please, write their definition before the story begins. If you still have unknown words in the following story, you can ask your instructor after the end of it.

“George is a university student and lives with his roommates. Unfortunately, he had broken his leg while skiing, so last month he needed help with many things. Fortunately, his roommates are also good friends of his and helped him a lot last month.

For example, last week he had the windows cleaned because they were really dirty after the rain. That night, he ordered dinner for everyone, pizza which is their favourite, but he had the dishes washed. As always he had some letters mailed to his parents on Wednesday. Also, he had his dog walked to the park twice a day. As a return to the favour, he fed his roommate’s goldfish every morning. He couldn’t go out, so he studied a lot. To do that, he had books and articles borrowed from the library twice a week. He was an ideal student for a whole month. One thing is for sure George is going to pass with flying colours all his exams this semester!” (Target items are in red)
1. Clean
2. Order
3. Wash
4. Mail
5. Walk
6. Feed
7. Study
8. Borrow
9. Pass
Discourse-level production tasks

Version B

NAME: _____________________________

Give the definitions of the following words, before listening to the story. Ask your instructor for help if you need any.

Roommates=
Fortunately=
Clean the windows=
Mail a letter=
Feed=
Walk the dog=
Do a favour=
Borrow=
Pass with flying colours=
Semester=
Wash the dishes=

“George is a university student and lives with his roommates. Unfortunately, he had broken his leg while skiing, so last month he needed help with many things. Fortunately, his roommates are also good friends of his and helped him a lot last month.

He__________________________________________________________
__________________________________________________________
__________________________________________________________
__________________________________________________________
__________________________________________________________
__________________________________________________________
__________________________________________________________

____
Discourse-level production tasks

Version C (instructor’s script)

You will hear a story once. It will also be projected on the whiteboard when the projector will be turned off, and we will be asked to re-write it with the help of the prompts provided to you. You have also been given some words; please, write their definition before the story begins. If you still have unknown words in the following story, you can ask your instructor after the end of it.

“Ms Pappas is a seventy-year-old woman living with her husband on a small Greek island. In winter it gets lonely, but in summer all her children and grandchildren come to the island to spend their summer vacations. So she does up the house to welcome her family.

Last summer, with the help of her neighbours, she had the house renovated. She had the walls painted white, and she planted beautiful flowers in the yard. She opened all the windows for fresh air to get into the house. She had the sheets changed in all bedrooms. On the day of their arrival, she had the good set of dishes carried to the kitchen from the attic. She cooked her delicious moussaka for dinner. In the evening, she had the table set in the yard. They ate and had fun until late. When everybody went to bed, she sat alone in the yard to enjoy the smell of jasmine. She felt happy because her house was full of life again” (the Target Items are in red)
Version C

Discourse-level production tasks

NAME: _____________________________

Give the definitions of the following words. Ask your instructor for help if you need any.

Do up the house= renovate=
Welcome the family=
Paint the walls= sheets=
Plant flowers= change=
Carry= Set of dishes (n.) =
Attic= Cook moussaka=
Set the table (v.) = yard=

“Ms Pappas is an eighty-year-old woman living with her husband on a small Greek island. In winter, it gets lonely, but in summer all her children and grandchildren come to the island to spend their summer vacations. So, she does up the house to welcome her family.

Last summer, she ________________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________

238
1. RENOVATE  
2. PAINT  
3. PLANT  
4. OPEN  
5. CHANGE  
6. CARRY  
7. COOK  
8. SET  
9. GO TO SLEEP
Version D

Discourse-level production tasks

You will hear a story once. It will also be projected on the whiteboard when the projector will be turned off, and we will be asked to re-write it with the help of the prompts provided to you. You have also been given some words; please, write their definition before the story begins. If you still have unknown words in the following story, you can ask your instructor after the end of it.

“Lina is an eleven-year-old girl. She is an excellent student and never asks for help with her homework. She is also very helpful around the house. She always tidies her room alone. Sadly, last month she broke her arm at volleyball practice, so she asked the help of her friends and family to do the chores she normally does alone.

Lina studied hard this month and with the help of her best friend she didn’t fall behind at school. She revised for a test in Geography, and she had an essay typed for the English lesson. She solved all the problems in Maths, and she had the answers written on her book. She also tidied her room with the help of her mum. She put all her clothes in the wardrobe, and she dusted her desk. Also, she had the windows cleaned, and she had the floor mopped. Finally, she fed her brother’s goldfish and she had her dog walked to the park every day.” (The Target Items are in red)
Version D

Discourse-level production tasks

NAME: _____________________________

Give the definitions of the following words. Ask your instructor for help if you need any.

Tidy a room =
Break an arm=
Revise=
Type =
Clean the windows=
Wardrobe= feed =
Dust = Walk the dog=
mop the floor= goldfish=

“Lina is an eleven-year-old girl. She is an excellent student and never asks for help with her homework. She is also very helpful around the house. She always tidies up her room alone. Sadly, last month she broke her arm at volleyball practice, so she asked the help of her friends and family to do the chores she normally does alone.

Last month, she

__________________________________________________________
__________________________________________________________
__________________________________________________________
1. STUDY
2. TYPE
3. WRITE
4. PUT
5. DUST
6. CLEAN
7. MOP
8. FEED
9. WALK
## APPENDIX H: CONSENT FORM

### PARTICIPANT CONSENT FORM

To be completed by the participant. If the participant is under 18, to be completed by the parent / guardian / person acting in loco parentis.

- I have read the information sheet about this study
- I have had an opportunity to ask questions and discuss this study
- I have received satisfactory answers to all my questions
- I have received enough information about this study
- I understand that I am / the participant is free to withdraw from this study:
  - At any time (until such date as this will no longer be possible, which I have been told)
  - Without giving a reason for withdrawing
  - (If I am / the participant is, or intends to become, a student at the University of Greenwich) without affecting my / the participant’s future with the University
- I understand that my research data may be used for a further project in anonymous form, but I am able to opt out of this if I so wish, by ticking here.
- I agree to take part in this study

<table>
<thead>
<tr>
<th>Signed (participant)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name in block letters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signed (parent / guardian / other) (if under 18)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name in block letters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature of researcher</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This project is supervised by:

**Professor Alessandro Benati, A.Benati@greenwich.ac.uk**

Researcher’s contact details (including telephone number and e-mail address):

**Maria Batziou, bm433@gre.ac.uk**
**ΕΝΤΥΠΟ ΣΥΓΚΑΤΑΘΕΣΗΣ ΣΥΜΜΕΤΕΧΟΝΤΩΝ**

Να συμπληρωθεί από τον συμμετέχοντα. Εάν ο/η συμμετέχων/συμμετέχουσα είναι κάτω των 18, να συμπληρωθεί από τον γονέα/ κηδεμόνα.

- Διάβασα το ενημερωτικό έντυπο σχετικά με την έρευνα
- Μου δόθηκε η ευκαιρία να κάνω ερωτήσεις και να συζητήσω για την έρευνα
- Πήρα ικανοποιητικές απαντήσεις σε όλες μου τις ερωτήσεις
- Πήρα αρκετές πληροφορίες σχετικά με την έρευνα
- Κατανοώ ότι ο συμμετέχων/ η συμμετέχουσα μπορεί να αποσυρθεί:
  - Οποιαδήποτε στιγμή (εκτός και αν έχει παρέλθει η ημερομηνία που θα ορίζει αδύνατη την αποχώρηση, η οποία μου έχει κοινοποιηθεί προφορικά)
  - Χωρίς να αιτιολογήσω την αποχώρησή μου
  - Χωρίς να επηρεαστεί η σχέση μου με το σχολείο
- Κατανοώ πως οι πληροφορίες μου σχετικά με την έρευνα μπορεί να χρησιμοποιηθούν σε περαιτέρω προγράμματα ανώνυμα, αλλά μπορώ και να επιλέξω το αντίθετο αν το επιθυμώ συμπλήρωνοντας αυτό το κουτί.
- Συμφωνώ να συμμετάσχω στην έρευνα

<table>
<thead>
<tr>
<th>Υπογραφή (συμμετέχων/ουσα)</th>
<th>Ημερομηνία</th>
</tr>
</thead>
<tbody>
<tr>
<td>Όνομα με κεφαλαία</td>
<td></td>
</tr>
<tr>
<td>Υπογραφή (γονέα/ κηδεμόνα/ άλλου) (κάτω των 18)</td>
<td>Ημερομηνία</td>
</tr>
<tr>
<td>Όνομα με κεφαλαία</td>
<td></td>
</tr>
<tr>
<td>Υπογραφή ερευνήτριας</td>
<td>Ημερομηνία</td>
</tr>
<tr>
<td>Επιβλέπων καθηγητής του προγράμματος:</td>
<td></td>
</tr>
<tr>
<td>Καθηγητής Alessandro Benati, <a href="mailto:A.Benati@greenwich.ac.uk">A.Benati@greenwich.ac.uk</a></td>
<td></td>
</tr>
<tr>
<td>Στοιχεία Επικοινωνίας της ερευνήτριας:</td>
<td></td>
</tr>
<tr>
<td>Μαρία Μπάτζιου, 210 76 55 505, info@mbstudies,gr</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX I: INFORMATION SHEET

Postgraduate Research Study

“Measuring the effects of combined SI and SO on the acquisition of the English Causative”

INFORMATION SHEET

Dear students and parents,

I would like to invite you to be involved in this research study. Before you decide to give your consent (for the parents), your cooperation and whether you want to be part of this study, it is essential that you fully understand why the research is being conducted and what your participation will involve. Please take time to read carefully the following and feel free to ask me for any further information or clarification now or at any point. Take time to make your decision.

PURPOSE OF THE STUDY:

The purpose of this study is to investigate the relative effects of three different approaches to grammar instruction. Two of these are currently used in our lessons whereas the third is a combination of the two. If we can understand which type of instruction is more beneficial for the students, we can apply it to our programme and make grammar instruction more effective and a better experience for all.

EXPLANATION OF RESEARCH:

The students (11-12 years old) will be instructed and receive practice on the English causative, which is, in general, difficult to be learned. This instruction and practice will last one week. It will take place during their regular class time and their schedule will not be upset; the material that they will be taught is appropriate to their level and they were going to be taught these features regardless of my research. One week before, immediately afterwards and three weeks later, and again during regular class time, they will complete a short test of approximately 15 minutes consisting of 2 exercises that will focus on the aforementioned feature, so as to have an indication of their acquisition of this feature.

THE ROLE OF THE SUPERVISOR:

The present study will be supervised by Professor Alessandro Benati, who is Director of the Centre for Applied Research and Outreach in Language Education (CAROLE) at Greenwich University and an academic researcher in the area of Applied Linguistics and Second Language Studies. He previously supervised PhD studies where data were collected in a similar way. He will not be present during the study. However, if you wish to come in contact with him via email he will be more than willing to discuss with you any issues that you might feel you need further clarification with. Professor Benati speaks English so communicating with him will not be a problem. Should any of you not feel confident enough with the level of their
English, a good idea would be to find a spokesperson who could present the professor any queries that may arise. His contact address is at the end of this information sheet.

**CONFIDENTIALITY:**

All information collected will be confidential and used only for research and teacher training purposes. The data (test scores) will be collected anonymously. This means that only I, i.e., the researcher, and the supervisor will know the names of the students. If data from this study are published, no names will be used. The data will be stored in a safe location and in a computer and only the researcher and the supervisor of this study will have access to them.

**PARTICIPATION:**

Your decision to give your permission for your children’s participation is strictly voluntary; it will affect in no way your or the children’s relationship with me, nor the children’s academic performance and programme. Also, you or the child can decide to withdraw from the study at any point without giving any reason. If you withdraw, all data will be withdrawn and destroyed. If you decide to take part, you will also be asked to sign a consent form.

**Contact for further information:**

Prof. Alessandro Benati,
Director of the Centre for Research and Outreach in Language Education (CAROLE)
Faculty of Architecture, Humanities and Computing, Greenwich Campus, SE 10 9LS
A.Benati@gre.ac.uk  tel.: +44020 8331 9048

Maria Batziou,
Director of MB studies
31 Adrianoupoleos st., 16121, Kesariani, Athens, Greece
bm433@gre.ac.uk  tel.:+30210 7655505
ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ

Αγαπητοί γονείς και μαθητές,

Θα ήθελα να σας προσκαλέσω να πάρετε μέρος σε αυτή την έρευνα. Βεβαίως, προτού αποφασίσετε να δώσετε την συγκατάθεσή σας και να συνεργαστείτε ώστε τα παιδιά σας να συμμετάσχουν στην εν λόγω έρευνα, είναι σημαντικό να κατανοήσετε πλήρως το λόγο διεξαγωγής της και τι ακριβώς θα περιλαμβάνει η συμμετοχή σας σε αυτήν. Θα σας παρακαλούσα να αφιερώσετε λίγο χρόνο και να διαβάσετε αυτό έντυπο, εντομεταξύ είμαι στη διάθεσή σας να με ρωτήσετε οτιδήποτε, είτε περαιτέρω πληροφορίες είτε διευκρινίσεις. Έχετε στην διάθεσή σας όσο χρόνο χρειάζεστε για να αποφασίσετε.

Ο ΣΚΟΠΟΣ ΤΗΣ ΕΡΕΥΝΑΣ:

Ο σκοπός της έρευνας είναι να διερευνήσουμε την σχετική επίδραση που έχουν τρεις διαφορετικές προσεγγίσεις διδασκαλίας της γραμματικής. Δυο από αυτές τις έχουμε ήδη ενσωματώσει στη διδασκαλία μας ενώ η τρίτη αποτελεί ένα συνδυασμό των δύο. Εάν κατανοήσουμε ποιο από αυτά τα είδη είναι πιο ωφέλιμο για τους μαθητές μας, θα το εφαρμόσουμε στη διδασκαλία μας κάνοντας την εκμάθηση της γραμματικής πιο αποτελεσματική και τελικά πιο ευχάριστη εμπειρία για όλους μας.

ΕΠΕΞΗΣΗ ΤΗΣ ΕΡΕΥΝΑΣ:

Οι μαθητές (11-12 χρονών) θα διδαχθούν και θα εξασκηθούν στην Αγγλική σύνταξη του άιτη του, η εκμάθηση των οποίων θεωρείται γενικά δύσκολη. Η διδασκαλία και η εξάσκηση θα διαρκέσουν μια εβδομάδα. Θα γίνει κατά τη διάρκεια των μαθημάτων τους και το πρόγραμμά τους δεν θα διαταραχθεί στο ελάχιστο. Η ύλη που θα διδαχθούν είναι αντίστοιχη της επιπέδου τους και θα την διδάσκουν ανεξαρτήτως μαθητές τους. Μια εβδομάδα νωρίτερα, αμέσως μετά, τρεις εβδομάδες μετά κατά τη διάρκεια του σχολικού έτους θα κληθούν να κάνουν ένα σύντομο τεστ διάρκειας περίπου 15 λεπτών το οποίο θα αποτελείται από δύο ασκήσεις με επίκεντρο τα προαναφερθέντα γραμματικά φαινόμενα, τα τεστ αυτά θα λειτουργήσουν ως ενδεικτικά της κατάκτησής τους χωρίς δικαιολογημένου από τους μαθητές.

Ο ΡΟΛΟΣ ΤΟΥ ΕΠΙΒΛΕΠΟΝΤΑ ΚΑΘΗΓΗΤΗ:

Την επίβλεψη της έρευνας θα εχει ο Καθηγητής Alessandro Benati ο οποίος θεωρείται ειδικός σε αυτό το είδος διδασκαλίας. Ο καθηγητής Benati είναι διευθυντής του κέντρου έρευνας (CAROLE) του Πανεπιστημίου του Greenwich. Επίσης, είναι
ακαδημαϊκός ερευνητής στον τομέα της Εφαρμοσμένης Γλωσσολογίας και της εκμάθησης Σέννον Γλωσσών και έχει δημοσιεύσει δεκάδες άρθρα και βιβλία σε αυτόν τον τομέα. Έχει επιβλέψει και άλλους φοιτητές των οποίων οι έρευνες είχαν τον ίδιο τρόπο συλλογής πληροφοριών. Παρόλο που δεν θα είναι παρόν κατά τη διάρκεια της έρευνας, είναι πρόθυμος να συζητήσει μαζί σας μέσω email οποιοδήποτε σημείο της ή και να σας δώσει οποιαδήποτε διευκρίνιση. Ο καθηγητής μιλάει αγγλικά όποτε δεν θα υπάρχει πρόβλημα επικοινωνίας. Εάν κάποιος από εσάς δεν νιώθει αρκετά ανεπιθύμητη η επικοινωνία, με το επίπεδο των αγγλικών σας, μια καλή ιδέα είναι να διαλέξετε έναν εκπρόσωπο ο οποίος θα θέσει στον καθηγητή τυχόν απορίες σας. Τα στοιχεία επικοινωνίας του βρίσκονται στο τέλος του εντύπου.

ΕΜΠΙΣΤΕΥΤΙΚΟΤΗΤΑ:
Όλες οι πληροφορίες που θα συλλέχθουν θα χρησιμοποιηθούν μόνο για ερευνητικό σκοπό και για μετεκπαίδευση καθηγητών/τριών. Οι πληροφορίες (σκορ των τεστ) θα συλλεχθούν ανώνυμα. Αυτό σημαίνει ότι μόνο η ερευνήτρια και ο επιβλέπων καθηγητής θα γνωρίζουν τα ανώνυμα των μαθητών. Σε περίπτωση δημοσίευσης της έρευνάς, δεν θα υπάρχει χρήση ονομάτων. Οι πληροφορίες θα αποθηκευτούν σε ένα ασφαλές μέρος και σε έναν υπολογιστή στα οποία θα έχουν πρόσβαση μόνο η ερευνήτρια και ο επιβλέπων καθηγητής.

ΣΥΜΜΕΤΟΧΗ:
Η απόφασή σας να δώσετε άδεια στα παιδιά σας να συμμετάσχουν στην έρευνα είναι απολύτως εθελοντική. Δεν πρόκειται να επηρεάσει με κανέναν τρόπο την σχέση μου με εσάς ή τα παιδιά ή ή την απόδοσή τους ή το πρόγραμμα σπουδών τους αρνητικά. Επίσης, είτε εσείς είτε το παιδί σας μπορείτε να αποφασίσετε να αποσυρθείτε από την έρευνα σε οποιοδήποτε στάδιο χωρίς να χρειαστεί να αιτιολογήσετε αυτή την απόφαση. Εάν αποσυρθείτε, όλες οι πληροφορίες θα αποσυρθούν και θα καταστραφούν. Ένα αποφασίστε να συμμετάσχετε θα σας ζητηθεί να υπογράψετε ένα έντυπο συγκατάθεση.

ΣΤΟΙΧΕΙΑ ΕΠΙΚΟΙΝΩΝΙΑΣ:

Prof. Alessandro Benati, Director of the Centre for Research and Outreach, in Language Education (CAROLE) Faculty of Architecture, Humanities and Computing, Greenwich Campus, SE 10 9LS A.Benati@gre.ac.uk tel.: +44020 8331 9048

Maria Mpatisou MB studies language school Adrianiouploules 31, 16121 Kaisariani info@mbstudies.gr tel.: 210 76 55 505
APPENDIX J: UREC APPROVAL

Maria Batziou  
Faculty of Architecture, Computing and Humanities  
Centre for Research and Outreach in Language  
Education (CAROLE)  
Queen Mary 259  
University of Greenwich  
30 Park Row  
Greenwich  
SE10 9LS  

Direct Line 020 8331 8842  
Direct Fax 020 8331 8824  
Email researchethics@gre.ac.uk  
Our Ref. UREC/14.4.5.17  
Date: 10 November 2015

Dear Maria,

University Research Ethics Committee – Minute 14.4.5.17

| TITLE OF RESEARCH: Measuring the effects of structured input followed by structured output on the acquisition of the English past simple and causative form by young learners with both sentence- and discourse-level tasks |

I am writing to confirm that the above application has been approved by Chair’s Action on behalf of the Committee and that you have permission to proceed.

I am advised by the Committee to remind you of the following points:

- You must notify the Committee immediately of any information received by you, or of which you become aware, which would cast doubt upon, or alter, any information contained in the original application, or a later amendment, submitted to the Committee and/or which would raise questions about the safety and/or continued conduct of the research;
- You must comply with the Data Protection Act 1998;
- You must refer proposed amendments to the protocol to the Committee for further review and obtain the Committee’s approval thereto prior to implementation (except only in cases of emergency when the welfare of the subject is paramount);
- You are authorised to present this University of Greenwich Research Ethics Committee letter of approval to outside bodies in support of any application for further research clearance.

On behalf of the Committee may I wish you success in your project.

Yours sincerely

John Wallace  
Secretary, University Research Ethics Committee

Cc: Prof. Alessandro Benati

University of Greenwich  
Greenwich Campus  
Old Royal Naval College  
Park Row  
London SE10 9LS  
Telephone: +44 (0)20 8331 8000

University of Greenwich, a charity and company limited by guarantee, registered in England (reg. no. 980729). Registered Office: Old Royal Naval College, Park Row, Greenwich, London SE10 9LS.
APPENDIX K: QUESTIONNAIRES

Language Exposure Questionnaire (for Young Learners in Greece)

Group: 
Participant’s name: 
Date: 
Age: 

1) What year are you in school? __________________

2) What language(s) is/are spoken in your home? __________________

3) Do you have any foreigner friends with whom you speak in English? □ YES □ NO
   If yes, how often do you contact them?________________

4) Have you read any books, comic books, game instructions or magazines in English during the last six months? □ YES □ NO

5) If yes, how many times have you read in any of these texts a phrase that contained the passive English causative? Select one:
   a) None that I can remember of.
   b) A few that I can remember of.
   c) Many that I can remember of.

   If your answer is (b) or (c) please write at least two examples that you can remember of:
   __________________________________________________________
   __________________________________________________________

6) Do you watch TV programmes in English? □ YES □ NO

7) If yes, how many times have you heard a phrase that contained the passive English causative? Select one:
   a) None that I can remember.
   b) A few that I can remember.
   c) Many that I can remember.

   If your answer is (b) or (c) please write at least two examples that you can remember of:
   _____________________________________________________________________________________
   _____________________________________________________________________________________

8) How many films have you seen in English during the last six months? ________________________
   How many times have you heard a phrase that contained the passive English causative? Select one:
   a) None that I can remember of.
   b) A few that I can remember of.
   c) Many that I can remember of.

   If your answer is (b) or (c) please write at least two examples that you can remember of:
   _____________________________________________________________________________________
   _____________________________________________________________________________________

9) How often do you listen to music in English? __________________________
   How many times have you heard or read in the lyrics a phrase that contained the passive English causative? Select one:
   a) None that I can remember of.
   b) A few that I can remember of.
   c) Many that I can remember of.

   If your answer is (b) or (c) please write at least two examples that you can remember of:
   _____________________________________________________________________________________
   _____________________________________________________________________________________

250
Language Exposure Questionnaire (for Adult Learners in the United Kingdom)

Group: 
Participant’s name: 
Date: 
Age: 

10) What language(s) is/are spoken in your residence? __________________

11) Do you have any foreigner friends with whom you speak in English? □ YES □ NO 
If yes, how often do you contact them?

12) How many books, comic books, newspapers or magazines have you read in English during the last six months? Total number: ________

13) How many times have you read a phrase that contained the passive English causative in these texts? Select one:
d) None that I can remember of.
e) A few that I can remember of.
f) Many that I can remember of.
If your answer is (b) or (c) please write at least two examples that you can remember of:
_________________________________________________________________________________
_________________________________________________________________________________

14) Do you watch TV programmes in English? □ YES □ NO

15) If yes, how many times have you heard a phrase that contained the passive English causative? Select one:
d) None that I can remember.
e) A few that I can remember
f) Many that I can remember
If your answer is (b) or (c) please write at least two examples that you can remember of:
___________________________________________________________________________________
________________________________________

16) How many films have you seen in English during the last six months? 
How many times have you heard a phrase that contained the passive English causative? Select one:
d) None that I can remember of.
e) A few that I can remember of.
f) Many that I can remember of.
If your answer is (b) or (c) please write at least two examples that you can remember of:
___________________________________________________________________________________
___________________________________________________________________________________

17) How often do you listen to music in English? 
How many times have you heard or read in the lyrics a phrase that contained the passive English causative? Select one:
d) None that I can remember of.
e) A few that I can remember of.
f) Many that I can remember of.
If your answer is (b) or (c) please write at least two examples that you can remember of:
### FORM UPR16

**Research Ethics Review Checklist**

Please include this completed form as an appendix to your thesis (see the Postgraduate Research Student Handbook for more information)

<table>
<thead>
<tr>
<th>Postgraduate Research Student (PGRS) Information</th>
<th>Student ID: 851183</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>PGRS Name:</strong></td>
<td>Maria Batziou</td>
</tr>
<tr>
<td><strong>Department:</strong></td>
<td>School of Languages and Area Studies</td>
</tr>
<tr>
<td><strong>First Supervisor:</strong></td>
<td>Professor Alessandro Benati</td>
</tr>
<tr>
<td><strong>Start Date:</strong></td>
<td>transferred in January 2017</td>
</tr>
<tr>
<td><strong>Study Mode and Route:</strong></td>
<td>Part-time ☐, MPhil ☐, MD ☐</td>
</tr>
<tr>
<td></td>
<td>Full-time ☒, PhD ☒, Professional Doctorate ☐</td>
</tr>
</tbody>
</table>

| **Title of Thesis:** | MEASURING SHORT AND LONG-TERM EFFECTS OF ISOLATED AND COMBINED STRUCTURED INPUT AND STRUCTURED OUTPUT ON THE ACQUISITION OF THE ENGLISH CAUSATIVE FORM AT SENTENCE AND DISCOURSE-LEVEL |
| **Thesis Word Count:** | 64432 |

If you are unsure about any of the following, please contact the local representative on your Faculty Ethics Committee for advice. Please note that it is your responsibility to follow the University’s Ethics Policy and any relevant University, academic or professional guidelines in the conduct of your study.

Although the Ethics Committee may have given your study a favourable opinion, the final responsibility for the ethical conduct of this work lies with the researcher(s).

**UKRIO Finished Research Checklist:**
(If you would like to know more about the checklist, please see your Faculty or Departmental Ethics Committee rep or see the online version of the full checklist at: [http://www.ukrio.org/what-we-do/code-of-practice-for-research/](http://www.ukrio.org/what-we-do/code-of-practice-for-research/))

| **a)** Have all of your research and findings been reported accurately, honestly and within a reasonable time frame? | YES ☒, NO ☐ |
| **b)** Have all contributions to knowledge been acknowledged? | YES ☒, NO ☐ |
| **c)** Have you complied with all agreements relating to intellectual property, publication and authorship? | YES ☒, NO ☐ |
| **d)** Has your research data been retained in a secure and accessible form and will it remain so for the required duration? | YES ☒, NO ☐ |
| **e)** Does your research comply with all legal, ethical, and contractual requirements? | YES ☒, NO ☐ |

**Candidate Statement:**

I have considered the ethical dimensions of the above named research project, and have successfully obtained the necessary ethical approval(s)

**Ethical review number(s) from Faculty Ethics Committee (or from NRES/SCREC):** UREC 14.4.5.17

If you have not submitted your work for ethical review, and/or you have answered ‘No’ to one or more of questions a) to e), please explain below why this is so:
<table>
<thead>
<tr>
<th>Signed (PGRS):</th>
<th>MBatziou MBatziou</th>
<th>Date: 30/10/17</th>
</tr>
</thead>
</table>

✓

✓