Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: in vitro and ex vivo evaluation

ARTICLE INFO

Keywords:
Mesoporous silica
Chalcones
Electrohydrodynamic atomization
Electrospraying
Poor solubility
Ex vivo
Molecular modeling
Cytocompatibility

ABSTRACT

Encapsulation of poorly water-soluble drugs into mesoporous materials (e.g. silica) has evolved as a favorable strategy to improve drug solubility and bioavailability. Several techniques (e.g. spray drying, solvent evaporation, microwave irradiation) have been utilized for the encapsulation of active pharmaceutical ingredients (APIs) into inorganic porous matrices. In the present work, a novel chalcone (KAZ3) with anticancer properties was successfully synthesized by Claisen-Schmidt condensation. KAZ3 was loaded into mesoporous (SBA-15 and MCM-41) and non-porous (fumed silica, FS) materials via two techniques; electrohydrodynamic atomization (EHDA) and solvent impregnation. The effect of both loading methods on the physicochemical properties of the particles (e.g. size, charge, entrapment efficiency, crystallinity, dissolution and permeability) was investigated. Results indicated that EHDA technique can load the active in a complete amorphous form within the pores of the silica particles. In contrast, reduced crystallinity (~79%) was obtained for the solvent impregnated formulations. EHDA engineered formulations significantly improved drug dissolution up to 30-fold, compared to the crystalline drug. Ex vivo studies showed EHDA formulations to exhibit higher permeability across rat intestine than their solvent impregnated counterparts. Cytocompatibility studies on Caco-2 cells demonstrated moderate toxicity at high concentrations of the anticancer agent. The findings of the present study clearly show the immense potential of EHDA as a loading technique for mesoporous materials to produce poorly water-soluble API carriers of high payload at ambient conditions. Furthermore, the scale up potential in EHDA technologies indicate a viable route to enhance drug encapsulation and dissolution rate of loaded porous inorganic materials.

1. Introduction

Cancer is a deleterious disease that accounts for a high annual global mortality rate. Progress in the development of novel cancer therapies is timely and rapid, however has not resulted in a satisfactory decrease in cancer related morbidity [1]. Conventional chemotherapeutic agents encounter numerous issues such as off-target cytotoxicity, poor water solubility, limited permeability and high clearance. As a result, the bioavailability of the API remains poor not achieving sufficient concentration at the tumor site [2]. Therefore, the need to develop appropriate anticancer agents and suitable drug delivery systems for efficient cancer therapy is urgent. Chalcones, either naturally occurring or their synthetic analogues, are a group of biologically active compounds with anti-inflammatory, anti-mutagenic, antipyretic, analgesic, and antioxidant activities [1,3]. Interestingly, they are emerging in anticancer drug discovery and are attracting a significant...
attention from drug designers [4]. They can exert cytotoxic, anti-mitotic, anti-proliferative properties via molecular alteration such as apoptosis induction, mitochondrial damage, kinases and tubulin inhibition, and angiogenesis inhibition [1,3–6]. Chalcones possessing lower hydroxylation and higher methoxylation are more efficient in inducing apoptosis and inhibiting proliferation [6], and especially their substituted derivatives are known to minimally interact with biological molecules compared to the conventional clinically used drugs, thus inducing a lower risk of genotoxicity and mutagenicity [4]. Although these biological properties offer them an exciting prospect, their poor aqueous solubility has restricted their medical and pharmaceutical applications [7].

Various strategies have been explored to enhance drug solubility [8–14] among which solid dispersions [11,13], nanosizing [15], inclusion complexes [16], spray drying [17], electrohydrodynamic atomization (EHDA) [18] and loading into mesoporous materials [19–23]. Utilizing amorphous forms of active pharmaceutical ingredients (API) has also gathered appreciable pace over the last decade due to their high dissolution rate and bioavailability [24].

Mesoporous silica materials (pore size 2–50 nm) have been explored as targeted [2,25] responsive [26] and controlled [27,28] drug delivery systems, because of their favorable features, such as a stable ordered structure and their convenient method of synthesis [21,29,36]. Among different mesoporous carriers, the hexagonally ordered mesosstructures and their convenient method of synthesis has a substantial impact on the resulting properties of the active such as on their stability, amorphous state, loading efficiency, dissolution rate and bioavailability [8,23,32]. EHDA (also termed electro-spraying) is considered a versatile and flexible technique for the preparation of polymeric nano- and microparticulate materials with high API encapsulation efficiency and narrow particle size distribution and has been explored for a wide range of pharmaceutical and biomedical applications [9,18,34,35].

In the present work, a novel chalcone (KAZ3) with high degree of methoxylation was successfully synthesized using the Claisen-Schmidt condensation method. KAZ3 is a poorly soluble compound therefore a good candidate for assessing the dissolution enhancing effect of electro-spraying technique utilizing silica matrices as the drug carrier. KAZ3 was loaded into mesoporous (SBA-15, MCM-41) and non-porous (fumed silica) particles using the solvent impregnation and EHDA techniques. Among different mesoporous carriers, the hexagonally ordered mesostructured SBA-15 and MCM-41 are the most investigated mesoporous materials in literature, because of the high stability of their mesostructures and their convenient method of synthesis [21,29,36]. Although both materials are made of amorphous SiO4 tetrahedra and have hexagonally arranged arrays of pores [29], they differ in pore geometry. SBA-15 possesses circular pore geometry, a wider pore size (5–10 nm) and a thicker wall, compared to MCM-41 which is characterized by a hexagonal pore geometry and pores in the range of 2–5 nm [36,37].

In the present study, the drug loaded mesoporous formulations were developed after process optimization (jet mapping) and were characterized in terms of particle size and morphology (scanning electron microscopy, laser diffraction), contact angle and drug crystallinity (differential scanning calorimetry, Fourier Transform Infrared Spectroscopy, Powder X-ray diffraction). The dissolution and permeability profiles of the drug loaded mesoporous formulations were assessed in vitro in phosphate buffer solution pH 7.4 (PBS) and ex vivo using the non-everted gut sac method, respectively. Cytotoxicity evaluation of the mesoporous formulations was conducted on intestinal epithelial cells (Caco-2 cells).

To the best of our knowledge, this is the first thorough study on EHDA engineering for direct drug loading into mesoporous materials. The potential for enhanced drug loading, increased stability of the drug in the amorphous state, ultimately displaying improved dissolution and permeability profiles is demonstrated.

2. Materials and methods

2.1. Materials

3′,4′,5′-Trimethoxycetophenone, 4-Anisaldehyde, sodium hydroxide, methanol, ethyl acetate, petroleum ether and anhydrous magnesium sulphate were purchased from Alfa Aesar (Lancashire, UK) and Fisher Scientific (Loughborough, UK). Ethanol, Acetone, Pluronic P123, tetaethylorthosilicate (TEOS 98%) ammonia (NHS 25%) and cetylpyridinium bromide (CTAB) were supplied from Sigma-Aldrich Chemical Company (Dorset, UK). All reagents were of the analytical grade. Non-porous fumed silica AEROSIL® 130 was obtained from Evonik Industries AG.

2.2. Synthesis of (E)-3-(4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)-prop-2- en-1-one (KAZ3)

The Claisen-Schmidt condensation reaction (Supplementary Material (SM), scheme S1) was adopted for chalcone synthesis [38]. Briefly, sodium hydroxide solution (50% w/v, 66.7 mmoles, 5.3 mL) was added to a stirred solution of the 3′,4′,5′-Trimethoxycetophenone (0.908 g, 6.67 mmoles) and 4-anisaldehyde (1.4 g, 6.67 mmoles) in methanol (30 mL). The resulting mixture was stirred at room temperature and sequentially monitored by TLC ethyl acetate/petroleum ether (3:7) upon the completion of the reaction. The reaction was quenched with distilled water (30 mL) and extracted with ethyl acetate (3 × 30 mL). The combined organic extract was washed with brine (50 mL), dried with anhydrous magnesium sulphate and the solvent was removed under vacuum. The crude product was recrystallized from ethanol to afford a yellow solid of 1.96 g (89% yield). The structure of the formed chalcone was confirmed using an array of different analytical methods including nuclear magnetic resonance (NMR), mass spectroscopy (MS), Fourier transform infrared spectroscopy (FTIR) and thin layer chromatography (TLC). (SM, Section 1.2).

2.3. Molecular simulations

Molecular dynamics (MD) calculations were performed using the program Materials Studio, in order to screen whether microporous or mesoporous materials would be better carrier candidates of KAZ3 [39]. A single drug molecule was placed inside the framework of each of the two host structures (microporous zeolites and mesoporous silica). Periodic boundary conditions were applied, and the simulations were performed at a temperature of 310 K. The universal force field was used with charges calculated via the QEq methodology. Each simulation was run for a total of 4 million steps with a time-step of 1 × 10–15 s.

2.4. Synthesis and characterization of mesoporous silica host

2.4.1. Synthesis of SBA-15 particles

The SBA-15 mesoporous particles were prepared according to a well-established method [40], using triblock copolymer EO20-PO70EO20 (Pluronic P123) as the surfactant and tetaethylorthosilicate (TEOS 98%) as the silica source. The surfactant was initially dissolved in an acidic (HCl) aqueous solution at 35 °C, followed by the addition of TEOS under stirring at 35 °C for 2 h. The mixture was transferred into an autoclave, maintained at 35 °C for 20 h (without stirring) and subsequently aged at 90 °C for 24 h. The solid product was recovered by filtration without washing and air-dried at 80 °C. The removal of the surfactant took place through calcination at 550 °C for 6 h with a heating rate of 1 °C/min.
2.4.2. Synthesis of MCM-41 particles

The MCM-41 particles were synthesized under basic conditions through the hydrolysis of TEOS in a water/ammonia (NH₃ 25% w/w) mixture containing cetyltrimethylammonium bromide (CTAB) as the surfactant agent [41]. The mixture was stirred for 30 min and subsequently heat-treated at 80 °C for 96 h in an autoclave. The final product was retrieved after filtration, rinsing with cold ethanol and air-drying, followed by calcination at 550 °C for 5 h (heating rate: 2 °C/min). Geometry and pore volume of the produced mesoporous silica were characterized using small angle X-ray scattering (SAXS) and N₂ adsorption-desorption isotherms (SM, Section 1.3).

2.5. Drug loading methods

2.5.1. Solvent impregnation method

SBA-15, MCM-41 or FS particles (6 mg/mL) were dispersed in acetone or ethanol drug solutions (2 mg/mL) using a water bath sonicator for 15 min. The resulting suspensions (target drug loading was set at 25% w/w, SM, Section 2.3) were magnetically stirred overnight in screw-capped vials. An aliquot of 1 mL of the dispersion was centrifuged and drug was quantified in the supernatant with UV spectrophotometry. The cap was removed in order to allow evaporation of solvents whilst stirring to obtain KAZ3 loaded mesoporous silica particles in a solidified form.

2.5.2. Electrospraying method

Identical procedures were used to prepare dispersions of mesoporous or non-porous silica in drug solutions. Five millilitres of each dispersion were loaded into a syringe which was connected to a stainless steel conductive needle using silicone tubing. A syringe pump (world precision instruments, UK) was used to control the infusion rate of suspensions through the needle. An electric field (16–17.5 kV) was applied to the metallic needle using a high voltage power supply (Glassman high voltage supply, UK). The deposited particles were collected for 3.5 h onto a glass substrate. It is worth mentioning that increasing silica particle concentration of the suspension above 12 mg/mL resulted in blockage of the needle nozzle. For scaling up, the electrospraying could be performed by adopting a multiple nozzle system, a nozzle-less system or by increasing the nozzle diameter. The drug content of the sprayed product was quantified with UV spectrophotometry. Accurately weighted amounts of each sample were dispersed in acetone and sonicated for 20 min. The suspensions were then centrifuged, and the drug content was quantified in the supernatant solutions.

2.6. Drug loading efficiency

The composition of the drug-loaded samples, loading methods and entrapment efficiencies using UV spectrophotometry are presented in Table 1. The entrapment efficiency (EE %) was calculated according to Eq. (1).

\[
EE\% = \frac{\text{Actual amount of drug present in samples}}{\text{Expected theoretical amount of drug}} \times 100
\]

(1)

2.7. Jet mapping

Jetting maps were established by gradually increasing both flow rate (1–100 μL/min) and applied voltages (0–20 kV) in order to optimize the electrospraying process. For map construction, suspensions of silica particles (MCM-41, SBA-15 and FS) in acetone and ethanol were used. The jetting behavior was monitored using a camera (GX CAM HICHROME-MET, GT vision, Suffolk, UK) and images of jetting modes were obtained.

2.8. Scanning electron microscopy (SEM) studies

The morphology of loaded and unloaded silica particles was investigated by means of scanning electron microscopy (SEM, Carl Zeiss EVO HD-15, Oberkochen, Germany). Particles were mounted onto double adhesive layer on an aluminum stub. The samples were gold-coated using ion sputtering device (Edwards S150B, West Sussex, UK) and scanned at an accelerating voltage of 10 kV.

2.9. Thermal gravimetric analysis (TGA)

Thermal gravimetric analysis of pristine silica materials, physical mixtures (drug/silica) and the drug loaded samples was performed using a TGA analyzer (Perkin Elmer, Pyris). Samples (~5 mg) were placed in porcelain pans and were heated in nitrogen gas over the range 20–800 °C at a heating rate of 10 °C/min. Entrapment efficiency was calculated using Eq. (2).

\[
\%\text{Wt loss of drug loaded samples from (100 – 800 °C)} = \frac{\%\text{Wt loss of silica from (100 – 800 °C)}}{\text{Theoretical drug content %}}
\]

(2)

2.10. Differential scanning calorimetry (DSC)

The thermograms of the KAZ3, MCM-41, SBA-15, FS, physical mixtures and the drug loaded samples were obtained on a PerkinElmer differential scanning calorimeter (Shelton, USA). The samples (~5 mg) were loaded in aluminum pans and were heated from 20 to 400 °C at a rate of 10 °C/min under a nitrogen stream at a flow rate of 20 mL/min. The percentage of crystallinity of the drug loaded samples was calculated using the enthalpy of melting according to Eq. (3) [42]:

\[
\%\text{Crystallinity} = \frac{\Delta H_m \times 100\%}{\Delta H_{m,0}}
\]

(3)

where \(\Delta H_m\) is the melting enthalpy of the drug loaded formulations, \(\Delta H_{m,0}\) is the melting enthalpy of a fully crystalline reference material (100% crystallinity); in the current study, the physical mixture of each silica type with equivalent drug quantity was considered as the reference material.

2.11. Powder X-ray diffraction (PXRD)

The crystalline state of the raw materials and the drug loaded samples was investigated by PXRD analysis on a Bruker D8-Advance diffractometer (USA) using Cu Kα₁ radiation (\(\lambda = 1.54 \text{ Å}\)) over the 2θ range from 8° to 35° and a step size of 0.03°.

2.12. Contact angle measurements

Water contact angle on drug, unloaded and drug loaded mesoporous silicas were measured using a sessile drop profile by an optical tensiometer (Theta Lite, Biolin Scientific, Sweden). A water drop of approximately 5 μL of each sample was deposited using a liquid manual dispenser (Hamilton syringe with a 22 gauge needle) on a smooth homogenous surface. The images of the drop were recorded at different time intervals. The contact angles were measured on both sides of the sessile drop and the average was taken as the result.

2.13. In vitro release studies

Pure drug or drug-loaded formulations were suspended in 2 mL of phosphate-buffered saline (PBS) solution in capped Eppendorf tubes. In vitro release studies were conducted in a shaking water bath (60 rpm) at 37 °C under sink conditions. At different time intervals, the Eppendorfs were centrifuged and 1.5 mL samples were withdrawn and replaced.
with the same volume of fresh PBS. The drug content in each sample was quantified by UV spectrophotometry at 350 nm. Release experiments were carried out in triplicate and averaged results were reported.

2.14. Ex vivo intestinal permeability studies

Ex vivo intestinal permeation of KAZ3 (250 μg) from suspensions and the KAZ3 loaded silica particle formulations, containing equivalent amount of drug, was evaluated using the non-everted gut sac method [43]. Male Wistar rats were fasted overnight with free access to water. The animals were euthanized and the small intestine was excised by cutting from the upper end of the duodenum to the lower end of the ileum. Intestine was thoroughly washed with cold Krebs-Ringer solution using a syringe with a blunt end. The non-everted tissue was cut into 5 cm segments and tied with silk suture from the one end. After filling with 0.5 mL of either KAZ3 suspension or KAZ3 loaded particle suspensions (equivalent to 0.25 mg KAZ3) both intestinal ends were fastened from the upper end of the duodenum to the lower end of the ileum. Intestine was thoroughly washed with cold Krebs-Ringer solution

The amount of drug which permeated across the intestine was determined using Eq. (4).

\[
\text{Apparent permeability (μg/cm²) = \frac{\text{concentration} \times \text{volume}}{\text{mucosal surface area}}} \tag{4}
\]

The mucosal surface area was calculated according to Eq. (5), considering the intestine a cylinder.

\[
\text{Mucosal surface area (cm²) = π \times \text{diameter} \times \text{intestine length}} \tag{5}
\]

2.15. Cytocompatibility studies

Caco-2 cells (colon adenocarcinoma human cell line) were cultured in Dulbecco’s modified Eagles Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 100 U/mL penicillin, and 100 μg/mL streptomycin and maintained at 37 °C in a humidified atmosphere (95% relative humidity) containing 5% v/v CO₂. In stock cultures, cells were subcultured by trypsinization in tissue culture flasks every 48–72 h. In the experiments described, Caco-2 cells were used at passages 40–45.

2.16. In vitro cytotoxicity assay

The cytotoxicity effect of pure KAZ3 and the drug loaded MCM-41, SBA-15 and FS materials on Caco-2 cells was evaluated by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric assay (Trevingen® [44,45] in a time- and concentration-dependent manner. Caco-2 cells were seeded in 96-well plates at an initial density of 10⁴ cells/well and were left overnight to attach. The cells were then exposed to KAZ3 at increasing concentrations (0.1 μM - 100 μM) and the drug loaded MCM-41, SBA-15 and FS carriers at two different concentrations (0.1 mg/mL and 1 mg/mL) for 4 h, 24 h and 48 h. Untreated cells were considered as negative control, whereas cells treated with 1% v/v Triton X-100 were used as positive control. After the specified time-points, 10 μL of the MTT reagent (5 mg/mL) were added in each well and the 96-well plate was incubated for a further 1 h at 37 °C in a humidified atmosphere. The medium was then replaced with 100 μL DMSO to allow dissolution of the formed formazan crystals and the absorbance of the colored, solubilized product was read at 590 nm using an ELISA microplate reader. Percent cell viability was calculated according to Eq. (6).

\[
\text{Relative cell viability (%) = (OD}_{\text{treated cells}} - \text{OD}_{\text{blank}})/(\text{OD}_{\text{control cells}} - \text{OD}_{\text{blank}}) \times 100 \tag{6}
\]

Results are expressed as the mean value ± standard deviation (S.D.) of three independent experiments.

3. Results and discussion

3.1. KAZ3 Synthesis and characterization

The chemical structure of the synthesized chalcone (KAZ3) is shown in Fig. S1. The drug was synthesized to afford a decorated aromatic ring with 4-methoxyphenyl (B-ring) and 3,4,5-trimethoxyphenyl (A-ring). Methoxylation of the aromatic groups intended to increase the antiproliferative activity of the drug [6]. In addition, this decoration aimed to decrease the reactivity of α, β-unsaturated carbonyl group thus decreasing their possible interactions with biological molecules.
and therefore the potential of adverse effects [7]. The purity of the product was determined by TLC and elemental analysis. The product was also characterized by proton & carbon-13 NMR, infrared spectroscopy and mass spectrometry (SM, Fig. S2).

3.2. Molecular simulation studies

The simulations were used to investigate the diffusion properties of KAZ3 inside a typical microporous zeolite (BEA) and a mesoporous material (MCM-41) in order to determine the most pertinent carrier for loading and release of KAZ3, prior to carrying out experimental studies. MCM-41 was chosen to be a model for mesoporous silica as it is difficult to run MD studies for SBA-15 due to its amorphous character since the exact nature of the structure is not well-defined. Snapshots of the position of KAZ3 during the course of the simulation show that the molecule does not diffuse through the microporous channels of the BEA structure (Fig. 1A). Although the molecule fits inside the zeolite, it is unable to travel through the structure because it is too bulky to move between the intersections in the zeolite's channel system. This lack of movement is confirmed by the calculated root-mean displacement for the molecule, which shows a flat line (Fig. 1C). In contrast, the RMS displacement for the drug inside the MCM-41 framework shows a steady increase during the course of the simulation (Fig. 1C). KAZ3 is easily accommodated within the larger channel system of MCM-41 (Fig. 1B) and interacts with the –OH groups on the internal surface, but the interaction is insufficiently strong for it to be held tightly in place at the simulation temperature. As a result, the molecule moves slowly across the internal surface of MCM-41. The simulations suggest that mesoporous materials of this type may be relatively easy to load, and that some degree of controlled release will be observed experimentally.

As a result, mesoporous materials (MCM-41 and SBA-15), rather than microporous were selected for experimental investigation.

3.3. Structural characterization of porous carriers

X-ray diffractograms (SM, Fig. S3) of both mesoporous materials (SBA-15 and MCM-41) exhibited the typical pattern of 2-D hexagonal space group (p6mm). The N2 adsorption data (SM, Fig. S3 and Table S1) showed that both materials depict large BET areas (700–1000 m²/g) and pore volumes (~1 cm³/g), as well as a narrow pore size distribution (PSD) with a mean pore width of 8 nm for SBA-15 and 4 nm for MCM-41. MCM-41 materials are generally characterized by a pore size of 2 to 10 nm, while SBA-15 exhibit larger pores between 4.6 and 30 nm [46]. For drug delivery applications, the pore sizes usually range between 3 and 10 nm [28].

3.4. Jetting maps

Four different modes were encountered during EHDA; (i) dripping mode, (ii) unstable jetting mode, (iii) stable single jet and (iv) stable multi jet. The dripping mode is observed when a liquid fragment rises from the nozzle exit often without sufficient applied voltage, while the stable jetting is obtained when the liquid breaks into finer droplets [47]. The jetting maps for all sprayed formulations are shown in Fig. 2A–F. The jetting maps are constructed to enable the detection of a relationship between the flow rate and the applied voltage; yellow regions represent the dripping mode; green sections show stable jetting and the blue areas display unstable jetting states. The dripping mode was attained in all sprayed formulations, generally observed when low voltages were applied (0–10 kV). Increasing the applied voltage
Fig. 2. Jetting images i) micro-dripping ii) unstable jetting iii) stable cone jet iv) stable multi-jet and jetting maps of A. SBA-15 in acetone B. SBA-15 in ethanol C. MCM-41 in acetone D. MCM-41 in ethanol E. FS in acetone and F. FS in ethanol.
to > 10 kV yielded unstable jetting modes but required further increments to be balanced with flow rate (as shown in each jetting map) to ensure that stable jetting is achieved.

3.5. Particle morphology

SEM images of the pristine silica particles and the loaded formulations (20 kX) are shown in SM, Fig. S5. Selected formulations are shown in Fig. 3 at a higher magnification (40 kX) to examine the impact of drug loading on particle surface. Drug-loaded formulations prepared using solvent impregnation show rough topographical features as a result of dispersed active crystal formation on their surface (Fig. 3D). In contrast, electrosprayed particles (Fig. 3F) preserve particle surface morphology exhibiting smooth surfaces with little to none drug crystals present on the particle surface. This observation indicates that most drug is encapsulated within the pores of mesoporous silica. Lower magnification analysis (5 kX) revealed an aggregation tendency post drug loading. Solvent impregnated particles showed a greater tendency to aggregate during the loading process to form coarse clusters (Fig. 3C), attributed to the cohesive properties of surface deposited drug crystals [8]. However, particles engineered using electrospraying appear more scattered and the presence of fused fiber-like structures is reduced (Fig. 3E). During the electrospraying process mesoporous silica particles are atomized into smaller droplets favouring the disaggregation of the longer chained agglomerates into individual rod like structures.

3.6. Drug content and entrapment efficiency (EE%)

3.6.1. Determination of EE % using UV spectrophotometry

The drug loading efficiencies of all formulations are listed in Table 1. The results reveal that the loading method affects the loading
efficiency of mesoporous silica particles. The loading efficiency of electrospayed mesoporous silica was higher compared to those prepared using the solvent impregnation technique, exceeding 90.5%. On the contrary, formulations prepared using the solvent impregnation technique showed loading efficiencies up to 35.6%. The significant improvement in loading efficiency using EHDA is attributed to the rapid evaporation of sprayed solvent droplets, due to instabilities and bending motions which force the drug to be infiltrated inside the silica pores. Furthermore, droplets arising from the atomization process naturally increase the surface area for drying. The choice of organic solvent also affects the loading efficiency. The loading efficiency of SBA-AC-SIM particles was higher (35.65%) compared to that of SBA-Eth-SIM (18.29%), accounting for the lower polarity of acetone compared to ethanol. The more polar solvent (ethanol) favors the accommodation of large quantities of KAZ3 in solution, thus lowering the amount of drug adsorbed into pores [48]. The use of acetone for electrospaying mesoporous silica particles resulted in loading efficiencies of up to ~100% with high intra-batch variability. In these cases, heterogeneous dispersions of the drug within the silica matrix were obtained, because of sedimentation of silica particles in the drug solution during the electrospaying process.

The pronounced effect of acetone on particle instability is further corroborated by ζ-potential measurements (SM, Table S4). The ζ-potential values of mesoporous silica particles in acetone were ~9.75 mV for SBA-15 and ~4.45 mV for MCM-41. On the contrary, the absolute value of ζ-potential data obtained for ethanol based mesoporous silica dispersions was higher than 30 mV for both types indicating greater stability [49]. The effect of medium viscosity is equally important for dispersion stability. The low viscosity of acetone (0.39 cP) resulted in accelerated sedimentation of silica in the organic solvent. On the contrary, the greater viscosity of ethanol (1.1 cP) led to a more stable suspension. It is well accepted that the type of silica substrate greatly influences the loading efficiency of the drug. For the solvent impregnation method, mesoporous SBA-15 displayed higher loading efficiency than MCM-41, due to the larger pore size of SBA-15 compared to MCM-41. With regard to electrospayed formulations, both types achieved similar drug encapsulation values (EE ≥ 90.58%). Reduced drug loading values were obtained using non-porous FS. The drug content in nonporous FS formulations is attributed to surface drug adsorption, originating from interactions between the active compound and the surface silanol groups.

3.6.2. Determination of EE % using TGA

The thermogravimetric behavior of silica particles before and after drug loading is shown in SM (Fig. S8). The drug content of the silica formulations was determined following correction of the TG curve from water content by using the weight loss at the temperature range 100-800 °C, as by this stage, all drug content had decomposed. EE's are listed in Table 1. The EE of solvent impregnated samples were found to be higher than those calculated spectrophotometrically. TGA was performed on dried samples, which accounts for drug deposits on the surface following complete solvent evaporation. However, calculated EE for electrospayed samples were similar to the ones calculated using spectrophotometry. As shown in Table 1, the electrospayed mesoporous formulations exhibited higher EE compared to those loaded using the solvent impregnation method.

3.7. XRD and DSC studies

XRD and DSC were used to characterize the physical state of the drug in the silica formulations. XRD patterns of drug loaded formulations are demonstrated in Fig. 4A, B & C. No diffraction peaks were detected in any of the electrospayed mesoporous formulations as compared to the pure crystalline drug or to the corresponding physical mixture, indicating the presence of the drug in the amorphous state in the mesopores of the silica, because of the fast solvent evaporation of the EHDA technique. The X-ray diffraction patterns of the solvent impregnated formulations showed characteristic peaks of the drug in the crystalline state, but with lower intensities for the acetone impregnated formulations and sharper peaks for the ethanol impregnated samples, suggesting the presence of drug precipitates on the surface of the silica particles, due to the slow solvent evaporation during this technique. XRD results correlate well with the data obtained from DSC studies (Fig. 4D, E & F). The percentage of drug crystallinity in each formulation was determined using the drug’s melting enthalpies (SM, Table S5). The thermogram of the pure crystalline drug exhibits a sharp endothermic melting peak at 101 °C. The thermograms of the physical mixtures show a sharp peak at 98 °C. All solvent impregnated formulations showed a broadened endothermic peak at 116 °C for SBA-15 formulations and at 108 °C for MCM-41 samples. The broadening and shift of the melting peaks suggests a reduction in drug crystallinity, indicating partial amorphization [50].

The percentage of drug crystallinity in the solvent impregnated formulations ranged between 33.18% and 79.85% and a higher crystallinity was detected for the ethanol than the acetone impregnated formulations. No endothermic peaks were detected in the thermograms of the electrospayed formulations using ethanol (SBA-Eth-SP and MCM-Eth-SP), indicating drug entrapment in the silica in the amorphous state [51].

The absence of drug’s melting peak in the thermograms of drug loaded mesoporous particles has been previously reported in several studies [8,42,51]. However, electrospayed formulations using acetone (for SBA-AC-SP and MCM-AC-SP) showed a small melting peak at approximately 95 °C and drug crystallinity was calculated to be 12.96% and 14.82%, respectively. This is justified by the heterogeneous dispersion of the drug within silica, leading to crystallization of a small quantity of the drug molecules. The underestimated crystallinity when using XRD is most likely related to reduced diffraction intensity upon nano-sizing [18].

3.8. Contact angle goniometry studies

Contact angle is a macroscopic parameter which is often used to determine the interaction between liquid droplets (mostly water) and solid surfaces [52]. As presented in Fig. 5, raw SBA-15, MCM-41 and FS showed very low contact angle values (12.6°, 11.5°, 16.8°, respectively). The water droplet spread promptly all over solid particulate surfaces resulting in 0° contact angle within 2s. This result can be explained by the strong hydrophilicity of silica surfaces due to their abundant hydroxyl surface groups that are able to form hydrogen bonds with water molecules. Another reason is capillary action (wicking) of water through silica substrate due to the presence of nano-sized pores [53]. To determine the wettability of the drug, KAZ3 was sprayed using ethanol or acetone and the contact angle was measured. In both cases, the contact angle was high (> 90°), highlighting the high hydrophobicity of the drug irrespective of the solvent used. To further evaluate the presence of drug on or within particles, the contact angle of all formulations was measured. As shown in Fig. 5, the contact angle of all solvent impregnated formulations is similar to pristine mesoporous silica, indicating that mesoporous silica preserves its hydrophilicity, since the abundant free hydroxyl groups do not decrease with this technique. Also, contact angle values might be low because of the crystalline/semi-crystalline nature of the surface adsorbed active [52]. In contrast, the contact angle of atomized formulations was prominently higher than...
raw silica and solvent impregnated formulations with values ranging from 90° to 103°. This is attributed to the decrease of the free hydroxyl groups, possibly due to the interactions developed with the drug molecules, therefore decreasing hydrogen bonding with water. In addition, the wicking effect is also reduced as pores are partially blocked with drug. However, a reduction in contact angle over time was observed and varied depending on atomized formulations.

For example, the contact angle of SBA-Eth-SP was 90° at 0 s and attained its lowest value (4.3°) within 10 s. This reflects that drug dissolution occurs once water molecules penetrate through the pores. The respective contact angle values for SBA-AC-SP was 103° and reached 0° after 1 h. This is attributed to the higher loading efficiency of SBA-AC-SP than SBA-Eth-SP. Similar findings were obtained with MCM-41 based atomized formulations. With regard to non-porous atomized formulations (FS-Eth-SP and FS-AC-SP), values of 104° and 95° were obtained at 0 s, respectively. However, their contact angle took a longer time to decrease than atomized mesoporous formulations (Fig. 5), due to the lower dissolution rate of the adsorbed drug in formulations.

In particular, contact angle studies revealed that the ethanol-sprayed formulations were more hydrophilic compared to their acetone congeners. It is anticipated by extrapolation to the in vivo situation that the clearance of hydrophobic formulations would be slower; the latter, however, provides drug released amounts over extended periods of time that would be beneficial to the cellular absorption process. Complementary, it should be emphasized that hydrophobicity is a crucial factor contributing to cellular membrane permeability, since molecules are facilitated to move through the lipophilic structures. To this end, the bioaccumulation of the electrosprayed formulations is expected to be positively influenced by their hydrophobic nature, thus leading to increased permeable drug concentrations and enhanced bioavailability, especially for poorly soluble drugs.

3.9. In vitro release studies

In vitro release profiles of KAZ3 from all formulations are presented in Fig. 6. Drug release from the loaded mesoporous silica particles showed a bi-phasic pattern with an initial burst release followed by a subsequent plateau. The dissolution rate of the drug from the atomized drug loaded mesoporous silica particles was prominently higher than from the formulations prepared using solvent impregnation (t-test, \(p < .05 \)), reaching a total of 19% to 37.5% drug release within 1 h. On the other hand, solvent impregnated formulations only achieved a total of 4% to 17% drug release at the same time course. After 24 h electrosprayed formulations released between 41% to 72% of their drug content, while formulations loaded using the solvent impregnation method released between 10% to 38% of their total drug content. Conversely, pure crystalline drug and formulations based on FS achieved a total of 2% and 6% to 19% of drug release, respectively after 24 h. This indicates that incorporation of drug within mesopores has a pronounced effect on solubility enhancement.

Drug dissolution showed a 35-fold enhancement using EHDA compared to the raw crystalline drug. Solvent impregnated formulations with high crystallinity (33.2% - 79.9%) exhibited a lower dissolution rate when compared to electrosprayed formulations. This significant enhancement in drug’s dissolution properties by electrospraying is not only attributed to KAZ3 amorphization, but also to the lower particle size of the electrosprayed formulations. By decreasing silica particle size, the diffusion distance of the drug is reduced, thus improving its release rate [8]. In contrast, the presence of solvent impregnated silica particles yielded aggregates which partially block pores, increasing the drug diffusion distance to the dissolution media.

Although larger pores result to greater dissolution rates, no significant differences were observed between the dissolution profiles of SBA-15 and MCM-41-based formulations. This observation may be a
Fig. 5. Plots of θ values versus time for A. SBA-15, B. MCM-41 and C. FS before and after drug loading and D. digital images captured at different time intervals. Where SBA: SBA-15, MCM: MCM-41, FS: fumed silica, Eth: Ethanol, AC: acetone, SIM: solvent impregnation method and SP: electrospraying method.
result of the lower particle size of atomized MCM-41 than atomized SBA-15, which may have compensated for the reduced pore size [8]. However, a significant difference was observed between the dissolution rates of mesoporous silica-based formulations and non-porous particulates. Nonporous formulations released between 6.6% and 18.7% of their drug content by the end of the experiment. This demonstrates that incorporation of drug in nano-sized pores clearly improves dissolution more than interactions with surface silanol groups.

3.10. Release kinetics

The diffusion release kinetics in porous carriers is well illustrated using Higuchi and Korsmeyer-Peppas kinetic models [54–60]. The data obtained from the in vitro release studies were fitted to Higuchi [61] and Korsmeyer-Peppas [62] kinetic models (SM, Fig. S9). A curve fitting analysis was performed to determine the release kinetic parameters (SM, Table S6).

Applying the Higuchi model (SM, Fig. S9 A, B & C) all formulations demonstrated two-step release kinetics with high R² values for both stages. The R² values were ≥ 0.96 for the mesoporous silica-based formulations and ≤ 0.96 for the non-porous formulations. This high correlation coefficient suggests that the mechanism of release for KAZ3 through these systems is Fickian diffusion. However, the occurrence of a two-step release mechanism is possibly due to alterations to silica’s dissolution rate over time [55]. Similar two-step release kinetics for mesoporous materials for the Higuchi model have been previously reported in the literature [55–58]. The greatest K_H value was attained for the electrosprayed mesoporous silica-based formulations indicating a better drug release compared to other systems. However, the release rate constant varied, depending on the silica type and the solvent used for the atomization process (SM, Table S6).

The first 60% of the in vitro release data were fitted to Korsmeyer-Peppas as shown in SM Fig. S9 D, E & F. The obtained kinetic parameters (R² and n: diffusion or release exponent that characterizes the release mechanism of the drug) are presented in SM, Table S6. The plots of all formulations showed a linear fit to Korsmeyer-Peppas model (R²: 0.91–0.99). The n values of ethanol atomized formulations (MCM-Eth-SP and SBA-Eth-SP) were approximately 0.43, indicative of Fickian diffusion mechanism. However, the n values of the other formulations ranged between 0.25 and 0.35. This deviation could be attributed to the wide particle size distribution [62], resulting to fluctuations in diffusion times. The broader the size distribution [represented by span value (SM, Table S3)] the lower the n value. It is noteworthy that some studies have referred to the instance n < 0.43 as quasi-Fickian diffusion [63,64].

3.11. Ex vivo intestinal permeability studies

Cumulative permeation profiles of KAZ3 dispersion and KAZ3 after loading in different silica substrates (SBA-15, MCM-41, FS) utilizing different loading techniques (electrospraying and solvent impregnation) were determined by using the non-everted intestinal sac method. Results indicated that KAZ3 in suspension form demonstrated poor permeability across the intestinal membrane, owing to its low solubility in the mucosal compartment. Similar permeability profiles were obtained for all formulations prepared via the solvent impregnation
method (Fig. 7). On the contrary, a substantial permeation enhancement of the drug was observed for all formulations prepared via the electrospraying method. Such significant enhancement in KAZ3 intestinal permeability could be related to the drug solubilizing effect of the electrospraying method, as already demonstrated in the in vitro release studies. The increment in the permeation enhancing effect followed the order: MCM-41 > SBA-15 > FS, being in close agreement with the in vitro KAZ3 release profiles.

All electrosprayed mesoporous formulations reported statistically significant higher J_a and P_{app} values ($p < 0.05$), compared to both KAZ3 suspension and formulations prepared via the solvent impregnation method, as shown in Table 2. MCM-Eth-SP formulation showed the highest P_{app} achieving a 9.45-fold increase relative to the drug suspension. Similarly to the present study, it has been previously demonstrated that the adoption of various formulation approaches that result to improved drug solubility and dissolution rates can further contribute to improved intestinal permeability over plain drug suspensions [65,66].

3.12. Cytocompatibility studies

The IC$_{50}$ of KAZ3 was calculated to be 6.905 μM (Fig. 8A). The suitability of ordered mesoporous silica MCM and SBA for oral drug formulations has been previously thoroughly assessed on Caco-2 cells [67]. A moderate effect on cell viability was observed for most concentrations and incubation times evaluated, while particle size and shape were also found to partly contribute to cytotoxicity. In the present study, the cytotoxic effect of the drug loaded MCM, SBA and FS particles was evaluated at the concentrations of 0.1 mg/mL and 1 mg/mL on Caco-2 cells after 4 h, 24 h and 48 h of cell exposure to the dispersions (Fig. 8B, C & D).

No significant effect on cell viability (> 80%) was observed after 4 h of incubation for most formulations at both concentrations tested. On the contrary, a higher cytotoxic effect was induced after 24 h and 48 h of cell exposure to the tested formulations, with the effect being more pronounced (< 60%) at the concentration of 1 mg/mL. The cellular morphology of Caco-2 cells exposed to KAZ3 for either 24 h or 48 h was altered at concentrations ≥ 1 μM (SM, Fig. S10), a fact coinciding with the capacity of this agent to affect cell proliferation of Caco-2 cells (Fig. 8A). The capacity of KAZ3-loaded MCM, SBA and FS formulations to cause cytotoxicity and affect the proliferation of Caco-2 cells exposed for 48 h at 0.1 mg/mL and 1 mg/mL is also indicated by assessing the cellular morphology (SM, Fig. S11). The latter, coincides with the effect of these formulations to decrease the viability of Caco-2 cell cultures, as seen in Fig. 8D.

Table 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>J_a (ng/min/cm2)</th>
<th>$P_{app} \cdot 10^{-7}$ (cm/s)</th>
<th>Enhancement ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAZ3 suspension</td>
<td>0.22 ± 0.02</td>
<td>8.88 ± 0.8</td>
<td>1</td>
</tr>
<tr>
<td>SBA-Eth-SIM</td>
<td>0.21 ± 0.07</td>
<td>8.32 ± 2.8</td>
<td>0.9</td>
</tr>
<tr>
<td>SBA-Eth-SP</td>
<td>0.63 ± 0.03</td>
<td>25.30 ± 1.2</td>
<td>2.8</td>
</tr>
<tr>
<td>MCM-Eth-SIM</td>
<td>0.09 ± 0.01</td>
<td>3.60 ± 0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>MCM-Eth-SP</td>
<td>2.10 ± 0.02</td>
<td>84.0 ± 0.8</td>
<td>9.45</td>
</tr>
<tr>
<td>FS-Eth-SIM</td>
<td>0.31 ± 0.01</td>
<td>12.5 ± 0.40</td>
<td>1.4</td>
</tr>
<tr>
<td>FS-Eth-SP</td>
<td>0.83 ± 0.01</td>
<td>33.2 ± 0.39</td>
<td>3.7</td>
</tr>
</tbody>
</table>

3.12. Cytocompatibility studies

The IC$_{50}$ of KAZ3 was calculated to be 6.905 μM (Fig. 8A). The suitability of ordered mesoporous silica MCM and SBA for oral drug formulations has been previously thoroughly assessed on Caco-2 cells [67]. A moderate effect on cell viability was observed for most concentrations and incubation times evaluated, while particle size and shape were also found to partly contribute to cytotoxicity. In the present study, the cytotoxic effect of the drug loaded MCM, SBA and FS particles was evaluated at the concentrations of 0.1 mg/mL and 1 mg/mL on Caco-2 cells after 4 h, 24 h and 48 h of cell exposure to the dispersions (Fig. 8B, C & D).

No significant effect on cell viability (> 80%) was observed after 4 h of incubation for most formulations at both concentrations tested. On the contrary, a higher cytotoxic effect was induced after 24 h and 48 h of cell exposure to the tested formulations, with the effect being more pronounced (< 60%) at the concentration of 1 mg/mL. The cellular morphology of Caco-2 cells exposed to KAZ3 for either 24 h or 48 h was altered at concentrations ≥ 1 μM (SM, Fig. S10), a fact coinciding with the capacity of this agent to affect cell proliferation of Caco-2 cells (Fig. 8A). The capacity of KAZ3-loaded MCM, SBA and FS formulations to cause cytotoxicity and affect the proliferation of Caco-2 cells exposed for 48 h at 0.1 mg/mL and 1 mg/mL is also indicated by assessing the cellular morphology (SM, Fig. S11). The latter, coincides with the effect of these formulations to decrease the viability of Caco-2 cell cultures, as seen in Fig. 8D.
4. Conclusions

To obtain a comprehensive overview of the potentiality of electro-spraying as a successful strategy to improve the solubility of poorly soluble compounds, an in-depth study was conducted utilizing mesoporous (SBA-15, MCM-41) and non-porous (fumed silica) silica materials as the drug carriers of a sparingly water-soluble anticancer agent; a novel chalcone (KAZ3). Two different approaches were utilized to encapsulate the anticancer agent to the particles, namely; electrospraying and solvent impregnation method whereas an array of analytical methods was employed to characterize the empty and drug loaded carriers. The electro-sprayed mesoporous formulations demonstrated uniform particle size, high drug loading efficiencies with the drug encapsulated in an amorphous state, while at the same time a significant enhancement in drug dissolution up to 30-fold and drug intestinal permeability up to 9.45-fold was observed, compared to the pure crystalline drug, mainly due to drug amorphization on the silica carriers. Contact angle goniometry studies offered insights on the wettability properties of the mesoporous carriers further corroborating the in vitro and ex vivo data, whereas molecular dynamics offered a unique insight into the interactions between the drug and the framework and could prove to be a valuable tool in screening drug-mesoporous combinations for further experimental investigation. Importantly, the mesoporous loaded material exhibited moderate toxicity as observed by the kinetics of cell proliferation and the assessment of cell viability in Caco-2 cell cultures. Overall, the findings of the present study underline the potential of electrosprayed silica hybrids for further research for in vivo biomedical applications.

Declaration of interest

None.

Acknowledgement

The authors would like to gratefully acknowledge the Egyptian Culture Centre and the Educational Bureau in London for funding the research. The authors would also like to thank the EPSRC (EPSRC EHDA Network) for their support.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jconrel.2018.03.031.

References

