Eastern Mediterranean volcanism during Marine Isotope Stages 9 to 7e (335–235 ka): Insights based on cryptotephra layers at Tenaghi Philippon, Greece

Polina Vakhrameeva¹, Sabine Wulf¹,², Andreas Koutsodendris¹, Rik Tjallingii³, William J. Fletcher⁴, Oona Appelt⁵, Thomas Ludwig¹, Maria Knipping⁶, Mario Trieloff¹, Jörg Pross¹

¹ Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234–236, D-69120 Heidelberg, Germany
² Department of Geography, University of Portsmouth, Buckingham Building, Lion Terrace, Portsmouth, PO1 3HE, United Kingdom
³ GFZ German Research Centre for Geosciences, Section 4.3 Climate Dynamics and Landscape Evolution, Telegrafenberg, D-14473 Potsdam, Germany
⁴ Department of Geography, School of Environment, Education and Development, University of Manchester, Manchester, M13 9PL, United Kingdom
⁵ GFZ German Research Centre for Geosciences, Section 3.6 Chemistry and Physics of Earth Materials, Telegrafenberg, D-14473 Potsdam, Germany
⁶ Institute of Botany, University of Hohenheim, Garbenstraße 30, D-70593 Stuttgart, Germany

* Corresponding author: polina.vakhrameeva@geow.uni-heidelberg.de (P. Vakhrameeva)

Keywords: Cryptotephra; Italian and Aegean Arc volcanism; Marine Isotope Stages 9, 8 and 7; Eastern Mediterranean region; Tenaghi Philippon
Abstract

Tephra layers preserved in distal sedimentary archives represent chronicles of explosive volcanism that can complement the often more fragmentary information from near-source volcanic deposits to establish complete volcanic histories. With regard to these aspects, the Middle Pleistocene of the Eastern Mediterranean region stands out as it has a complex and diverse, but as yet largely unexplored record of volcanic eruptions. Here we present the first distal tephra record for the Eastern Mediterranean region spanning from 335 to 235 ka (corresponding to Marine Isotope Stages [MIS] 9 to 7e); our record has been derived from peat cores from the iconic terrestrial climate archive of Tenaghi Philippon (NE Greece). We have identified twenty-seven cryptotephra layers that represent eruptions from diverse Mediterranean sources. Six cryptotephra layers can be linked to Campanian volcanoes, and another six layers are tentatively correlated to Aeolian Arc volcanism. Of the ten cryptotephra layers that we have identified as deriving from the Aegean Arc, eight originate from Santorini volcano and two are tentatively attributed to either Kos or Milos. Five cryptotephra layers have yet unknown origins. Most of the identified cryptotephras represent previously undocumented eruptions. We provide age estimates for all cryptotephras and, by extension, for the underlying eruptions based on orbitally tuned pollen data from the same cores. The only cryptotephra layer in the 335–235 ka record from Tenaghi Philippon that represents a previously known eruption has a palynostratigraphically derived age of c. 289 ka and can be tentatively linked to the Seiano Ignimbrite from the Campanian Volcanic Zone; this represents the first time that this eruption can be traced beyond its proximal area. The documentation and geochemical characterization of tephra layers from different Mediterranean sources in the Tenaghi Philippon peat cores for MIS 9–7e is an important step towards the integration of regional Mediterranean tephrostratigraphic information for the Middle Pleistocene.
1 Introduction

Tephrochronology has emerged as a valuable, widely used technique in Quaternary geology because it enables the precise correlation and dating of sedimentary archives using tephra isochrons (Lowe, 2011). Over the recent past, the tracing of volcanic ash layers in distal (>100 km) and ultra-distal (>1000 km) settings with regard to their eruption centers has benefitted from new techniques of glass-shard extraction and single-glass geochemical analyses (e.g., Blockley et al., 2005; Lowe, 2011; Davies, 2015); this has allowed to greatly expand the geographical scale of tephrochronological applications (e.g., Lane et al., 2013; Jensen et al., 2014). The study of distal tephras including macroscopically non-visible tephras, so-called cryptotephras, can be instrumental in assessing the volumes, magnitudes and frequencies of both known and yet undocumented volcanic eruptions (e.g., Sulpizio et al., 2014; Ponomareva et al., 2015; Crocitti et al., in press); these aspects are crucial for predicting the societal and economic hazards and risks of volcanic eruptions (e.g., Bourne et al., 2016; Sandri et al., 2016).

In this context, the Eastern Mediterranean region with its highly explosive Paleogene–Quaternary volcanism merits special attention. The paleoenvironmental and paleoclimatic research in this region requires tephrochronological data in order to date and correlate sedimentary archives (e.g., Leicher et al., 2016; Kousis et al., 2018; Wulf et al., 2018). Moreover, considering that distal tephra records often document yet under-reported eruptions (e.g., Albert et al., 2017), incorporation of such data can help improve volcanic risk assessments for this densely populated region.

To date, a considerable number of studies has been devoted to the establishment of proximal-distal and distal-distal tephra correlations in the Eastern Mediterranean region. They have yielded a relatively advanced tephrostratigraphic framework for the Holocene and Late Pleistocene (e.g., Keller et al., 1978; Aksu et al., 2008; Zanchetta et al., 2011;
Wulf et al., 2018). However, the proximal record of volcanic eruptions in the Mediterranean region becomes increasingly fragmentary when going backwards in time (e.g., Wulf et al., 2012), and only very few studies have yet been carried out on distal tephras from that region that extend beyond the past c. 200 ka (Leicher et al., 2016; Kousis et al., 2018; Vakhrameeva et al., 2018). As a consequence, the regional Italian and Eastern Mediterranean (i.e., Aegean Arc, Anatolia) tephrostratigraphies for the Middle Pleistocene have remained not only rather incomplete, but also largely disconnected (Vakhrameeva et al., 2018).

In light of these limitations, there is clearly a need for archives that preserve distal tephra layers from different source regions. They can play a key role in establishing an integrated volcanic history of the Eastern Mediterranean region that extends beyond the last interglacial. Such an archive is represented by the early to late Pleistocene sediment record from Tenaghi Philippon (NE Greece; Fig. 1). Owing to its unique, peat-dominated lithology, this archive has yielded abundant (crypto)tephra marker horizons within the MIS 5–1 interval (St. Seymour et al., 2004; Lowe et al., 2012; Albert et al., 2015; Pross et al., 2015; Wulf et al., 2018). A recently published cryptotephra record for the MIS 12–10 section of the Tenaghi Philippon archive (Vakhrameeva et al., 2018) forms an important step towards extending Eastern Mediterranean tephrostratigraphy into the Middle Pleistocene. Building upon these studies, we here present cryptotephra data for the upper Middle Pleistocene interval of the Tenaghi Philippon archive spanning from MIS 9 to 7e (335–235 ka).

2 Study site

The Philippi peatland, mostly referred to as “Tenaghi Philippon”, is a 55 km² large sub-basin in the southeastern part of the Drama Basin, an intermontane tectonic basin in NE Greece (Fig. 1). From the early Pleistocene onwards, limnic and notably telmatic
conditions prevailed across most of the Philippi peatland, resulting in a nearly 200 m thick succession that consists predominantly of fen peat (Christanis et al., 1998). Based on palynological information from early drillcores, this succession spans the past ~1.35 Ma continuously (Wijmstra and Smit, 1976; Van der Wiel and Wijmstra, 1987a, b; Tzedakis et al., 2006). Due to its unique lithology, length and stratigraphic completeness, Tenaghi Philippon has emerged as a unique paleoclimate archive for the Quaternary in Europe since its discovery in the 1960s (e.g., Wijmstra, 1969; Wijmstra and Groenhart, 1983; Tzedakis et al., 2006; Pross et al., 2009; see Pross et al., 2015, for an in-depth review). Because the original material from coring campaigns in the 1960s had long deteriorated and was partially also compromised by drilling-related core loss, new, high-quality drillcores were recovered from the Philippi peatland in 2005 and 2009 (Pross et al., 2007, 2015). These cores provided the material for this study.

Geographically, Tenaghi Philippon is located within the potential ash-dispersal areas of a number of volcanic provinces, which – together with its exceptional stratigraphic length and completeness as well as its peat-dominated lithology – makes it a key (crypto)tephrostratigraphic archive for the Eastern Mediterranean region. Considering their proximity to Tenaghi Philippon, the most likely tephra sources during the Middle Pleistocene were the volcanic centers of Italy (Peccerillo, 2017) and the Aegean Arc (Piper and Piper, 2002) (Fig. 1). Further volcanic provinces that were active during the Middle Pleistocene and may have dispersed tephra particles to Tenaghi Philippon are western (e.g., Platevoet et al., 2014), central (e.g., Şen et al., 2003) and eastern (e.g., Sumita and Schmincke, 2013b) Anatolia, the eastern Carpathians (e.g., Molnár et al., 2018), and the French Massif Central (e.g., Nomade et al., 2012). The potential of Tenaghi Philippon with regard to recording eruptive events produced by various Mediterranean volcanic provinces is supported by the identification of cryptotephras of Italian, Aegean Arc and yet unknown eruptive centers of the Eastern Mediterranean.
during MIS 5–1 (130–0 ka; Wulf et al., 2018) and MIS 12–10 (460–335 ka; Vakhrameeva et al., 2018).

3 Material and methods

3.1 Core material

Core material from two drilling campaigns in the Philippi peatland was studied for the present paper. The cores TP-2005 (coordinates: 40° 58’ 24.0” N, 24° 13’ 25.2” E; 42 m above sea level) and TP-2009 (40° 57’ 39.5” N, 24° 16’ 03.1” E; 42 m above sea level) were drilled in a distance of 4.4 km from each other in 2005 and 2009, respectively (for details see Pross et al., 2007, 2015). Whereas core TP-2005 comprises the depth interval from 60 to 0 m, core TP-2009 spans the interval from 200 to 50 m depth. For the present study, we have analyzed the core sections from the 60–50 m depth interval of core TP-2005 and the 63–50 m depth interval of core TP-2009 for cryptotephras. Special emphasis was on the identification of cryptotephra layers that occur in both cores. Such a cryptotephra-based correlation of both archives allows critical assessment of correlations derived from palynological and X-ray fluorescence (XRF) core-scanning information (Fig. 2). Lithologically, the studied interval of core TP-2005 consists entirely of peat, whereas the studied interval of core TP-2009 consists of peaty mud and lake marls (63–58.5 m) and peat (58.5–50 m; compare Fig. 2).

3.2 Cryptotephra analysis

3.2.1 Extraction of glass shards

In a first analytical step, the cores were explored for cryptotephra layers using 10-cm-long contiguous sub-samples. Subsequently, the intervals that had yielded glass shards were investigated in 1 cm resolution in order to determine the exact stratigraphic position of cryptotephras. The extraction of glass shards from the host sediment and their
preparation for geochemical analysis were carried out using commonly applied
techniques (compare Vakhrameeva et al., 2018, for an in-depth description of the
processing protocol). The identified cryptotephras were labeled according to the scheme
previously introduced for Tenaghi Philippon cores (Wulf et al., 2018), with the
abbreviation of the coring campaign (TP05 or TP09) being followed by the mid-point of
the sample-depth range (in meters) where a cryptotephra was detected (e.g.,
cryptotephra TP09-55.35).

3.2.2 Geochemical analysis of glass shards

3.2.2.1 Electron probe microanalysis (EPMA)

Major-element analysis of single glass shards was performed using a wavelength-
dispersive (WDS) electron microprobe JEOL JXA-8500F at the German Research Centre
for Geosciences in Potsdam. The analytical conditions included an accelerating voltage
of 15 kV, a 10 nA beam current, and a 3–10 μm beam with count times of 20 s for the
elements Mg, P, Cl, Ti, Mn, and Fe, and 10 s for F, Ca, Al, Si, K, and Na (analyzed first).

MPI-DING reference glasses such as GOR128-G, GOR132-G, ATHO-G and StHs6/80
(Jochum et al., 2006) as well as natural Lipari obsidian (Hunt and Hill, 1996; Kuehn et al.,
2011) served as secondary glass standards and were measured once prior to sample
analyses to ensure inter-laboratory consistency of analytical data (Supplement 1). The
EPMA results were normalized to 100% total oxides on a volatile-free basis to facilitate
data comparison. Low values of total oxides (i.e., <90% for rhyolitic and <95% for other
glass shards) were excluded from the dataset, apart from two tephras for which no better-
quality analyses could be obtained.

3.2.2.2 Secondary Ion Mass Spectrometry (SIMS)
Selected glass shards were analyzed for trace elements using a CAMECA ims3f ion probe at the Institute of Earth Sciences, Heidelberg University, using a 14.5 keV, ~10 nA 16O$^-$ primary ion beam with a spot diameter of ~15 μm. Positive secondary ions were accelerated to 4.5 keV, and the energy filter was set to accept ions with a starting energy of 105±25 eV. The imaged field of the secondary ion optics was limited to a diameter of ~13 μm (nominal imaged field 25 μm, 400 μm field aperture), and the mass resolving power was ~400 (at 10% intensity). The setup used a pre-sputtering time of 270 s (including calibration of all peak positions prior to each analysis) and five acquisition cycles with integration times of 2 s (30Si), 5 s (85Rb, 88Sr, 89Y, 90Zr, 93Nb, 138Ba, 139La, 140Ce) and 20 s (232Th, 238U) per cycle. The NIST SRM 610 glass standard was employed as an internal standard (concentrations taken from Jochum et al., 2011), and the ATHO-G, StHs6/80-G, and GOR132-G glasses (Jochum et al., 2006) were used as secondary reference materials (Supplement 1).

3.3 XRF core scanning

The elemental composition of the TP-2005 and TP-2009 cores was determined semi-quantitatively with a 4th generation Avaatech XRF core scanner at the Institute of Earth Sciences, Heidelberg University. The fresh and smooth split core surface was covered with Ultalene prior to scanning to avoid contamination of the XRF detector and desiccation of the core. Measurements were acquired every 5 mm with a rhodium X-ray source (10 kV, 200 mA, 10 s) to cover the elements Al, Si, S, K, Ca, Ti, Mn, and Fe. To minimize the sample geometry effects (e.g., water content, surface irregularities, sediment density), element intensities (cps) were normalized by center-log-ratio (CLR) transformation (Weltje et al., 2015).

3.4 Pollen analysis
Based on the notion that the tree-pollen percentages at Tenaghi Philippon closely mirror glacial/interglacial cycles (e.g., Mommersteeg et al., 1995; Tzedakis et al., 2006; Milner et al., 2016), tree-pollen percentages were used to obtain pollen-based age constraints for the cryptotephra layers identified in the succession. For the examined interval of the TP-2005 core, the high-resolution (sample distance: 4 cm, equivalent to a mean temporal resolution of ~290 years) pollen dataset of Fletcher et al. (2013) was used. For core TP-2009, the available low-resolution pollen dataset of Pross et al. (2015) was augmented by an additional 22 new pollen samples covering the MIS 9e–d interval at a spacing of 18 cm (mean temporal resolution: ~1140 years). Palynological processing followed standard techniques that are described in detail in Fletcher et al. (2013) and Pross et al. (2015). The calculation of tree-pollen percentages was based on counting sums of at least 300 pollen grains excluding Poaceae, Cyperaceae, aquatic plants, and fern spores.

4 Core alignment and age model

Previous low-resolution pollen analysis has suggested that the 60–50 m interval of core TP-2005 broadly overlaps with the 60–50 m interval of core TP-2009 (Pross et al., 2015). Temporally, this overlap corresponds to MIS 9c–7e (c. 312–235 ka; Fletcher et al., 2013). The new element records for the respective intervals of the TP-2005 and TP-2009 cores derived from XRF scanning allow substantial refinement of the correlation between the cores. Specifically, variations in normalized Si$^{\text{CLR}}$ records show a distinct pattern that enabled unambiguous alignment and, together with the available palynostratigraphic information, reliable age control for both cores (Figs. 2 and S1). At Tenaghi Philippon, the element Si is predominantly an indicator for detrital material with relatively higher amounts during cold stages (Kalaitzidis and Christianis, 2002; Kalaitzidis, 2007). Although the Philippi peatland represents a minerotrophic rather than an ombrotrophic setting, two independent lines of evidence suggest that Si has reached the peatland primarily through
aeolian rather than aquatic transport. Firstly, the core sections examined in our study are predominantly composed of peat and (to a lesser extent) of lake marls (Fig. 2), with no lithological indication that would suggest fluvially influenced sedimentation (Fig. 2).

Secondly, the Si curve matches well with the percentages of steppe-element pollen at Tenaghi Philippon (Fig. S2). Steppe elements dominated the catchment area during cold and dry phases when aeolian dust dominated the supply of detrital matter, and their percentages were lowest during warmer, more humid intervals (Pross et al., 2009; Müller et al., 2011; Fletcher et al., 2013). Hence, the relative amount of Si was maximal under the driest and coldest conditions when aeolian dust dominated.

The Si-based core alignment did not only allow us to refine the overlap interval to 60 to 50.62 m, but also revealed an offset in the age/depth relationships of the TP-2005 and TP-2009 cores. This offset generally increases from the top (0.62 m) to the bottom (1.35 m) of the overlap interval. Based on the high-resolution palynostratigraphic age control for core TP-2005, the sediment at the top of the TP-2005 core segment at 50.44 m depth is 4.98 ka younger than in the TP-2009 core segment of the same depth; at the bottom (i.e., at 58.45 m) the age difference amounts to 7.94 ka (Table S1). These variations in offset across the overlap interval can be primarily attributed to changes in sedimentation rates and/or post-depositional compaction; to a lesser extent, they may also result from drilling-related processes such as non-uniform expansion of the peat in the drill cores depending on slight differences in lithology and water content. When calibrated against the time domain, the refined overlapping interval is from c. 312 to 240 ka. This Si-based correlation allows the integration of pollen datasets from cores TP-2005 and TP-2009 (Fig. 3).

To establish a chronology for the studied core sections, the previously published age model of Fletcher et al. (2013) for the 60–50 m depth interval of core TP-2005 was integrated with a newly developed age model for the 82–63 m depth interval of core TP-
2009 (Vakhrameeva et al., 2018). Specifically, the pollen data from Fletcher et al. (2013) were aligned to the Iberian margin MD01-2443 sea-surface temperature (Martrat et al., 2007) and pollen (Roucoux et al., 2006) record. Since the latter was aligned via benthic oxygen isotope values ($\delta^{18}O_{\text{benthic}}$) to the EPICA Dome C (EDC) Antarctic temperature record, this allowed placing the TP-2005 pollen data on the Antarctic ice core timescale EDC3 (Parrenin et al., 2007). The pollen dataset newly generated for the present paper for the 63–59 m depth interval of core TP-2009 was aligned to that from a previously recovered core from Tenaghi Philippon (TF-II; Wijmstra and Smit, 1976) using the orbitally tuned age model of Tzedakis et al. (2006), thereby following the procedure given in Vakhrameeva et al. (2018) (see Table S2 for details).

The chronological uncertainties that arise from using different approaches in the development of age models for the TP-2005 and TP-2009 cores are within the uncertainties inherent in the age models used. The error in the EDC3 timescale for the studied interval amounts to 6 ka (Parrenin et al., 2007), and an additional uncertainty of ~0.3 ka is introduced through the correlation of the MD01-2443 $\delta^{18}O_{\text{benthic}}$ and TP-2005 pollen records (Fletcher et al., 2013). Nevertheless, the palynologically derived age estimates for cryptotephras provided in our study are precise enough to facilitate distal tephra correlations.

5 Results

5.1 Cryptotephra record

The Tenaghi Philippon cryptotephra record for the MIS 9–7e interval comprises 29 cryptotephra layers, of which 22 cryptotephras were identified in core TP-2009 and 7 cryptotephras were extracted from core TP-2005 (Table 1). The core alignment via XRF-scanning-derived Si data allowed to resolve the stratigraphic relationship between cryptotephra layers found in both cores (Fig. 3). A total of 25 cryptotephra layers were
detected within the MIS 9 interval (c. 324–289 ka), whereas only 4 cryptotephra layers were detected in the MIS 7 interval (c. 240–235 ka). Glass-shard concentrations in the cryptotephra samples range from 0.2 to 24 shards per gram dry weight (shards/g_{dwt}). All cryptotephra layers were characterized by EPMA, and ten cryptotephra layers contained shards that were large enough to be analyzed by SIMS. It is noteworthy that several of the obtained isochrons are based on currently limited geochemical information; in addition, some shards yielded only low analytical totals (<95%); however, even limited geochemical data can still provide an indication of their source, as it has been demonstrated by previously reported cryptotephra layers from Tenaghi Philippon with similarly low numbers of shards analyzed (Wulf et al., 2018). Representative EPMA and SIMS glass data (single analytical points) are given in Table 2, and full analytical data can be found in Supplement 1. Figure 4 shows normalized (volatile-free) EPMA data as plotted on the total alkali vs. silica (TAS) classification diagram (Le Bas et al., 1986).

Beyond the cryptotephra layers mentioned above, five cryptotephra levels have been detected in core TP-2009 (Table 1); however, extraction of glass shards from these levels for geochemical analysis was precluded by the low concentrations, small sizes and vesicular nature of the shards in these samples. In the following, the identified cryptotephra layers are described in ascending stratigraphic order for the TP-2009 and TP-2005 cores.

5.1.1 Cryptotephra layers TP09-61.35 to TP09-60.25 (7 layers, c. 324–318 ka)

Three cryptotephra layers (TP09-61.35, TP09-60.935, and TP09-60.85) are located within an interval characterized by very high (>90%) tree-pollen percentages, implying that they were deposited during the warmest part of MIS 9 (i.e., MIS 9e; Railsback et al., 2015) between 324 and 320 ka (Fig. 3). Four younger cryptotephra layers (TP09-60.65, TP09-60.35, TP09-60.335, and TP09-60.25) occur within an interval with decreasing (86–
32% tree-pollen percentages corresponding to the first cooling phase within MIS 9 (i.e., MIS 9d; Railsback et al., 2015). Based on palynostratigraphic age control, they can be assigned ages of c. 319 and 318 ka.

Five of these cryptotephra layers (i.e., TP09-61.35, -60.935, -60.85, -60.65, and -60.25) with very low glass-shard concentrations of 0.4 to 4 shards/g dw (Table 1) are rhyolites (70.0–72.2 wt% SiO₂; alkali ratios of 0.64–0.79; normalized data) that straddle the boundary between medium and high K₂O concentrations (2.9–3.3 wt%) (Table 2; Fig. 4a, b, c). They are generally very similar in their major-element composition, except for one apparently low Na₂O value (1.2 wt%) shown by cryptotephra layer TP09-60.25 that is likely due to Na loss during EPMA (Table 2).

The range-finder and high-resolution samples TP09-60.35 and TP09-60.335 with glass-shard concentrations of 1 and 4 shards/g dw, respectively, show distinct major-element chemistries. Cryptotephra layer TP09-60.35 classifies as a high-K calcalkaline rhyolite with concentrations of 73.7 wt% SiO₂, 4.4 wt% K₂O, 1.7 wt% Na₂O, and 3.4 wt% MgO, and an alkali ratio of 2.68 (Table 2; Fig. 4a, b, c). The trace-element data indicate a pronounced depletion in concentrations of high field strength elements (HFSE), in particular Nb, Zr, Th, and U as well as rare earth elements (REE, i.e., Y, La, Ce), and elevated abundances of large ion lithophile elements (LILE, i.e., Ba, Rb, Sr; Table 2; Figs. 4d and S3). Cryptotephra layer TP09-60.335 is a calcalkaline dacitic tephra characterized by 64.5 wt% SiO₂, 2.0 wt% K₂O, 4.5 wt% Na₂O, and an alkali ratio of 0.43 (Table 2; Fig. 4).

5.1.2 Cryptotephra layers TP09-60.055a, -60.055b, -60.05a, and -60.05b (2 layers, c. 317 ka)

Four cryptotephra components were identified in the TP-2009 sample at 60.0–60.1 m core depth. The pollen record in this interval is characterized by a sharp decrease from
high (86%) to relatively low tree-pollen percentages (32%), corresponding to the first cooling phase within MIS 9 (i.e., MIS 9d; Railsback et al., 2015; Fig. 3).

The low-resolution tephra scan of sample TP09-60.05 revealed two trachytic and two rhyolitic components with a total glass-shard concentration of 14 shards/g dry wt. Two distinct trachytic compositions labeled TP09-60.05a and TP09-60.05b could not be replicated during the high-resolution (1-cm) tephra scan; therefore, their stratigraphic position could not be further refined. The first trachytic cryptotephra component TP09-60.05a (1 analysis) is characterized by 61.3 wt% SiO$_2$, 9.2 wt% K$_2$O, 3.3 wt% Na$_2$O, 2.6 wt% CaO, 0.80 wt% MgO, and 0.35 wt% Cl (Table 2; Fig. 4a). The alkali ratio of 2.77 assigns it to ultra-potassic rocks (Fig. 4c). The second trachytic component TP09-60.05b (seven analytical points) has slightly higher SiO$_2$ concentrations (62.1–63.1 wt%) but lower alkali ratios (1.05–1.32) as they are indicative of shoshonites (Fig. 4a, c). It can be further distinguished from TP09-60.05a by lower CaO and MgO contents (1.2–1.8 and 0.32–0.39 wt%, respectively) as well as higher Cl values (0.72–0.90 wt%) (Table 2). Differences between the two trachytic components also emerge from the SIMS trace-element dataset showing that component TP09-60.05b is more enriched in HFSE (including REE) and depleted in some of LILE (Sr, Ba) compared to TP09-60.05a (Table 2; Figs. 4d and S3).

The high-resolution tephra scan of the 60.0–60.1 m interval revealed an additional cryptotephra level at 60.055 m depth (6 shards/g dry wt), which contained two distinct rhyolitic compositions, here labeled as TP09-60.055a and TP09-60.055b. These compositions are identical to those found in sample TP09-60.05. Cryptotephra component TP09-60.055a (four analyses) exhibits SiO$_2$ concentrations of 69.9–73.9 wt% and a calcalkaline to high-K calcalkaline affinity (3.1–4.5 wt% K$_2$O, 3.4–4.8 wt% Na$_2$O; Fig. 4a, b, c). The trace-element dataset is defined by enrichment in LILE relative to HFSE including REE (Table 2; Figs. 4d and S3). Cryptotephra component TP09-60.055b (three shards) is a high-silica rhyolite (76.6–77.7 wt% SiO$_2$) with high-K calcalkaline affinity (4.8–5.0 wt%
The trace-element composition is similar to that of cryptotephra component TP09-60.055a, except for slightly lower Zr/LILE ratios (Table 2; Figs. 4d and S3).

5.1.3 Cryptotephra layers TP09-59.995, -59.95a, -59.95b, and -59.935 (4 layers, c. 317–316 ka)

Four distinct cryptotephra components were detected in the TP-2009 core at 59.9–60.0 m depth, during the first cooling phase within MIS 9 (i.e., MIS 9d; Railsback et al., 2015; Fig. 3). One trachytic (TP09-59.95a) and one rhyolitic (TP09-59.95b) cryptotephra component with a total glass-shard count of 1 shard/g dwt were identified in the low-resolution tephra sample at c. 316 ka. The major-element composition of the trachytic glass component TP09-59.95a is defined by 62.2 wt% SiO₂ and an alkali ratio of 1.77, which classifies it as a potassium-rich trachyte (Fig. 4a, c). It is further characterized by values of 1.7 wt% CaO, 0.79 wt% MgO, and 0.37 wt% Cl (Table 2). The trace-element concentrations display high LILE/HFSE and LILE/REE ratios (Table 2; Figs. 4d and S3). Cryptotephra component TP09-59.95b is a high-K calcalkaline high-silica rhyolite (76.7 wt% SiO₂) with K₂O and Na₂O values of 4.7 wt% and 3.0 wt%, respectively (Table 2; Fig. 4a, b, c).

The high-resolution sample scan of the 59.9–60.0 m interval revealed two additional cryptotephra horizons, TP09-59.995 and TP09-59.935. These are, however, geochemically distinct from the above-mentioned rhyolitic composition. They have low glass-shard counts of 2 and 3 shards/g dwt and are dated palynostratigraphically to 317 and 316 ka, respectively. Both cryptotephra layers show similar major-element characteristics with concentrations of 71.8–73.4 wt% SiO₂, 4.1–4.5 wt% K₂O and low Na₂O values (1.1–1.5 wt%) suggesting a classification as high-K calcalkaline rhyolites (Fig. 4a, b, c). The main compositional differences are their MgO (2.4 wt% in TP09-59.935
vs. 3.6 wt% in TP09-59.995) and Al₂O₃ concentrations (15.6–16.2 wt% vs. 14.2 wt%, respectively) (Table 2).

5.1.4 Cryptotephra layers TP09-59.85 and -59.45 (2 layers, c. 316–314 ka)

Cryptotephra layers TP09-59.85 and TP09-59.45 have glass-shard counts of 0.2 and 1 shards/gdw. They occur within an interval of increasing (64–90%) tree-pollen percentages at the onset of the first warm phase within the later part of MIS 9 (i.e., MIS 9c; Railsback et al., 2015; Fig. 3). Their positions within the TP-2009 core yield age estimates of c. 316 and 314 ka, respectively.

Both layers represent rhyolites, albeit with slightly different major-element compositions. TP09-59.85 is characterized by concentrations of 76.2 wt% SiO₂, 1.0 wt% Na₂O, and 3.6 wt% K₂O (Fig. 4a, b, c). TP09-59.45 is less silicic (74.5 wt% SiO₂), richer in alkalis (1.5 wt% Na₂O and 4.7 wt% K₂O), and differs in higher FeO (1.4 wt% vs. 1.0 wt% in TP09-59.85) and lower CaO values (1.2 wt% vs. 2.1 wt% in TP09-59.85) (Table 2; Fig. 4a, b, c). Its trace-element spectrum is defined by very low concentrations of HFSE and REE, and relatively high concentrations of LILE (Table 2; Figs. 4d and S3).

5.1.5 Cryptotephra layers TP09-59.245 and -59.235 (2 layers, c. 313 ka)

A rhyolitic cryptotephra layer was detected in the low-resolution sample TP09-59.25 and subsequently replicated in the high-resolution sample TP09-59.245 yielding a glass-shard concentration of 2 shards/gdw. Another trachytic cryptotephra component with a glass-shard count of 3 shards/gdw was extracted from the contiguous high-resolution sample TP09-59.235. Both cryptotephra layers are from a core interval with high (72–85%) tree-pollen percentages during the first warm phase within the later part of MIS 9 (i.e., MIS 9c; Railsback et al., 2015; Fig. 3). They have a palynologically derived age of c. 313 ka.
The major-element composition of the rhyolitic cryptotephra layer TP09-59.245 indicates relatively low SiO$_2$ concentrations (69.7–70.7 wt%) with medium to high values of K$_2$O (2.9–3.5 wt%; Fig. 4a, b). The Na$_2$O concentrations (4.7–4.9 wt%) are higher than those of K$_2$O, and the alkali ratios are 0.60–0.74 (Fig. 4c). The SIMS trace-element data document depleted HFSE and REE concentrations in relation to the elevated abundances of LILE (Table 2; Figs. 4d and S3).

Cryptotephra layer TP09-59.235 has 62.0 wt% SiO$_2$, Na$_2$O (7.3 wt%) exceeding K$_2$O values (5.0 wt%), and an alkali ratio of 0.68 defining it as a sodium-rich trachyte (Fig. 4a, c). Its composition is further characterized by concentrations of 1.5 wt% CaO, 0.59 wt% MgO, and 0.45 % Cl, and trace-element data that show a moderate enrichment in LILE relative to Nb, Zr and REE (Table 2; Figs. 4d and S3).

5.1.6 Cryptotephra layers TP09-55.35, -55.095, and -55.045 (3 layers, c. 290–289 ka)

The rhyolitic cryptotephra layer TP09-55.35 with a glass-shard count of 1 shard/g$ _dwt$ and the chemically distinct K-alkaline cryptotephra layers TP09-55.095 and TP09-55.045 (with glass-shard counts of 2 shard/g$ _dwt$, respectively) occur in an interval of high (60–94%) tree-pollen percentages that characterize the second warm phase within the later part of MIS 9 (i.e., MIS 9a; Fletcher et al., 2013; Railsback et al., 2015; Fig. 3). This allows their ages to be constrained to c. 290 ka (TP09-55.35) and 289 ka (TP09-55.095, TP09-55.045).

Cryptotephra layer TP09-55.35 has major-element concentrations of 73.1–73.8 wt% SiO$_2$, 4.8–5.2 wt% K$_2$O, 1.6–2.2 wt% Na$_2$O, and 1.8–2.2 wt% MgO, which define it as a high-K calcalkaline rhyolite (Fig. 4a, b and c). The shards are enriched in LILE, while HFSE and REE are depleted (Table 2; Figs. 4d and S3).

Cryptotephra layers TP09-55.095 and TP09-55.045 are two closely spaced layers that are distinguishable on the basis of their major-element characteristics. TP09-55.095 (1
analysis) classifies as a potassium-rich trachyandesite with values of 57.2 wt% SiO₂, 5.7 wt% FeO, 4.4 wt% CaO, 3.2 Na₂O, and 7.8 wt% K₂O (Table 2; Fig. 4a, c). The younger TP09-55.045 cryptotephra layer (1 analysis) is a potassium-rich trachyte with higher SiO₂ concentrations (63.5 wt%), lower FeO (2.5 wt%) and CaO values (2.0 wt%), and Na₂O and K₂O levels of 4.5 wt% and 7.6 wt%, respectively (Table 2; Fig. 4a, c). Concentrations of Cl are comparable in both cryptotephra layers (0.54 wt% in TP09-55.095 and 0.66 wt% in TP09-55.045).

5.1.7 Cryptotephra layers TP05-56.475, -56.45, and -56.41 (3 layers, c. 289 ka)

The oldest cryptotephra layers in the examined part of core TP-2005 are situated at a depth of 56.4–56.5 m. They occur during the second warm phase within the later part of MIS 9 as defined by high (60–94%) tree-pollen percentages (i.e., MIS 9a; Fletcher et al., 2013; Railsback et al., 2015; Fig. 3) and can be assigned an age of c. 289 ka.

A rhyolitic cryptotephra layer with a glass-shard count of 1 shard/gdwt was identified in the low-resolution sample TP05-56.45. Subsequently, two additional layers of similar trachyphonolitic to trachytic composition were identified in the high-resolution samples TP05-56.475 and TP05-56.41, yielding glass-shard concentrations of 10 and 7 shards/gdwt, respectively.

The rhyolitic cryptotephra TP05-56.45 has a high-silica composition (75.6–75.9 wt% SiO₂). With K₂O values of 3.3–3.4 wt% it straddles the boundary between the calcalkaline and high-K calcalkaline fields (Fig. 4a, b). It shows low Na₂O contents (1.5 wt%) as well as relatively high MgO values (1.7 wt%) (Table 2; Fig. 4c). The major-element composition of cryptotephra layer TP05-56.45 resembles that of the above described cryptotephra layer TP09-55.35 from core TP-2009, except for significantly lower FeO and K₂O concentrations (0.5–0.6 wt% vs. 1.2–1.5 wt% and 3.3–3.4 wt% vs. 4.8–5.2 wt%,...
respectively), and higher CaO concentrations (3.1–3.3 wt% vs. 1.1–1.3 wt% in TP09-55.35) (Table 2).

Three analytical data points have been obtained for cryptotephra layer TP05-56.475, defining it as a trachyte that straddles the phonolitic boundary (Fig. 4a). The major-element chemistry is characterized by concentration ranges of 58.7–59.3 wt% SiO\textsubscript{2}, 4.1–4.6 wt% FeO, 3.4–3.6 wt% CaO, 3.6–3.8 wt% Na\textsubscript{2}O, and 8.4–8.7 wt% K\textsubscript{2}O (Table 2). The alkali ratio of 2.20–2.41 defines this tephra as potassic (Fig. 4c). In comparison, cryptotephra layer TP05-56.41 (5 analyses) has a less homogenous and slightly more evolved composition (59.1–63.1 wt% SiO\textsubscript{2}; Fig. 4a). Slightly elevated Na\textsubscript{2}O and K\textsubscript{2}O concentrations of 3.6–4.2 wt% and 8.4–9.6 wt% and the resulting high alkali ratios of 2.07–2.70 indicate a potassic to ultra-potassic composition (Fig. 4c) that also differs from TP05-56.475 by lower FeO (2.8–3.7 wt%) and CaO (2.2–3.2 wt%) values. The Cl concentrations of both cryptotephra layers are comparable, being in the range of 0.44–0.67 wt% (Table 2).

5.1.8 Cryptotephra layers TP05-50.75, -50.55, -50.45, and -50.05 (4 layers, c. 240–235 ka)

The youngest cryptotephra layers in the studied interval derive from low-resolution scanning samples from core TP-2005 between 51 and 50 m depth. This interval is associated with high (>80%) tree-pollen percentages during the oldest part of MIS 7 (i.e., MIS 7e; Fletcher et al., 2013; Railsback et al., 2015; Fig. 3) and dates to c. 240–235 ka. Four cryptotephra levels (TP05-50.75, TP05-50.55, TP05-50.45, and TP05-50.05) have been identified with glass-shard concentrations of 24, 2, 1, and 3 shards/g\textsubscript{dw}, respectively. Their major-element data define them as rhyolites with calcalkaline to high-K calcalkaline affinity (Fig. 4a, b). The compositions of all four cryptotephra layers are identical. The relatively wide ranges of concentrations in SiO\textsubscript{2} (71.8–75.9 wt%), MgO
(1.4–3.1 wt%), CaO (2.9–7.0 wt%), Na₂O (0.4–2.6 wt%), and K₂O (2.7–5.0 wt%) reflect high abundances of microcrystal inclusions. FeO values are typically very low (0.2–0.7 wt%; Table 2).

6 Origin of cryptotephras

Cryptotephra layers from the MIS 9–7e interval of the Tenaghi Philippon archive show diverse glass geochemical compositions that range from trachy-phonolites to high-silica rhyolites (Fig. 4). These compositions largely resemble those identified by Vakhrameeva et al. (2018) in the MIS 12–10 interval of the same archive and are therefore grouped into the previously introduced glass geochemical populations POP1 to 5 (Figs. 4–7). They also partly overlap with the trachy-phonolitic and rhyolitic glass compositions documented for the MIS 5 to 1 interval at Tenaghi Philippon, which were almost entirely assigned to known eruptive events (Wulf et al., 2018). In this study, the trachy-phonolitic population POP1, which can be subdivided into three sub-populations (POP1A to POP1C), is derived from Campanian volcanoes (see Section 6.1). The dacitic POP2 and rhyolitic POP3 populations most likely originate from Santorini in the Aegean Arc (Section 6.2). The high-silica rhyolitic POP4 population probably also derives from the Aegean Arc, although Santorini can be excluded as a source (Section 6.3). A newly defined POP6 rhyolitic composition is likely related to Aeolian Arc volcanism (Section 6.4). Finally, another distinct rhyolitic population (POP5) remains undefined with regard to its origin (Section 6.5).

In order to discern primary cryptotephra layers from potentially re-deposited material, we have used several criteria including (i) glass-shard concentration profiles, (ii) geochemical homogeneity/heterogeneity of cryptotephra layers, (iii) previous evidence from tephrrostratigraphical analyses at Tenaghi Philippon (Vakhrameeva et al., 2018; Wulf et al., 2018) for the downcore re-deposition of glass shards from visible, thick tephra layers.
caused by drilling processes. Although the significance of some cryptotephra layers as isochronous markers remains ambiguous at this stage, they nevertheless provide important information for the future identification of new potential key tephra markers in the Eastern Mediterranean region.

6.1 Cryptotephras of Campanian provenance

6.1.1 Cryptotephra layers TP09-60.05a and TP09-60.05b

The oldest Italian cryptotephra layer TP09-60.05 in the studied core interval has a palynologically derived age of c. 317 ka and consists of two trachytic components (POP1A and POP1B). Both components match the major- and trace-element compositions of the basal fall and lower and intermediate flow units (TP09-60.05b) and the upper flow unit (TP09-60.05a) of the Campanian Ignimbrite (CI, 39.85±0.14 ka; Giaccio et al., 2017a) (Figs. 5b, c and S4). The CI is present as a 23-cm-thick layer at 12.87 m in core TP-2005 (Müller et al., 2011); its components are prone to downcore displacement by coring-related processes, primarily affecting the topmost parts in a number of core segments of the TP-2005 core (Wulf et al., 2018). Re-deposited CI material has also been reported from core TP-2009 at 63.015–63.05 m depth (Vakhrameeva et al., 2018). Together with the geochemical evidence, these observations support the interpretation of cryptotephra layer TP09-60.05 to represent re-deposited CI.

6.1.2 Cryptotephra layers TP09-59.95a and TP09-59.235

The trachytic components of cryptotephra layers TP09-59.95a (POP1A) and TP09-59.235 (POP1C) with age estimates of c. 316 and 313 ka, respectively, exhibit relatively low alkali ratios (0.68–1.77; Fig. 5a) and increased Cl concentrations relative to CaO/FeO ratios. This strongly supports a Campanian origin. Specifically, in the CaO/FeO vs. Cl discriminative diagram (Giaccio et al., 2017b) the cryptotephras unambiguously plot
POST-PRINT

within the Ischia compositional field (Fig. 5b). They closely match Ischia compositions in
other major- and trace-element plots as well (Figs. 5c and S4).

The eruptive history of the island of Ischia dates back to at least 150 ka (e.g., Poli et al.,
1987). Ischia is part of the Campanian Volcanic Zone that has been active since the last
c. 290 ka (De Vivo et al., 2001; Rolandi et al., 2003), although an even earlier onset of
volcanic activity at c. 720 ka is supported by several findings of distal tephras in Middle
Pleistocene deposits of the Italian and Balkan Peninsulas (e.g., Giaccio et al., 2013, 2014;
Petrosino et al., 2015; Figs. 5c and S4). The recent discovery of a potentially Ischia-
derived cryptotephra layer in the MIS 11 interval of the TP-2009 core (TP09-70.45, c. 391
ka; Vakhrameeva et al., 2018; Figs. 5 and S4) suggests that an Ischia/Campanian source
for cryptotephra layers TP09-59.235 and TP09-59.95a is well possible. However, the
current lack of evidence for volcanic activity during MIS 9 in the proximal and distal
Campanian tephrostratigraphic record precludes detailed correlations of these tephras.

6.1.3 Cryptotephra layers TP09-55.095 and -55.045, and TP05-56.475 and -56.41

These trachyphonolitic cryptotephra layers (POP1A) have relatively high alkali ratios
(1.67–2.70) and major-element compositions that overlap with those of Campi Flegrei,
Roccamonfina, and Roman volcanoes (Figs. 5a and S4). However, the Cl vs. CaO/FeO
plot (Fig. 5b) clearly attributes all cryptotephra layers to Campanian volcanoes, and in
particular to Campi Flegrei activities.

The two trachyphonolitic cryptotephra layers from core TP-2005 (TP05-56.475 and -
56.41) only marginally overlap in some major-element plots. However, they show the
same evolutionary trend as the Campi Flegrei field (Figs. 5a, c and S4), with cryptotephra
layer TP05-56.41 partly overlapping with the upper flow unit of CI and cryptotephra layer
TP05-56.475 being less evolved than the CI (Figs. 5c and S4). The trachyandesitic TP09-
55.095 and trachytic TP09-55.045 cryptotephra layers from core TP-2009 follow the same
trend, being less and more evolved than the TP-2005 cryptotephras, respectively (Figs. 5a, c and S4).

Because the age of the cryptotephras layers is c. 289 ka, whereas the volcanic activity at Campi Flegrei is restricted to c. 60 ka (Pappalardo et al., 1999), we define their provenance as Campanian. The oldest deposits of the Campanian Volcanic Zone are exposed in the western foothills of the Apennine Mountains, where the CI is underlain by a suite of older ignimbrites with \(^{40}\text{Ar}/^{39}\text{Ar}\) sanidine ages between c. 290 and 116 ka (De Vivo et al., 2001; Rolandi et al., 2003). Specifically, the oldest Seiano Ignimbrite is dated to c. 289.6±1.9 ka (lowermost sample VE-2B) and 245.9±3.0 ka (uppermost sample VE-2A), the former date being well consistent with our palynologically derived ages of c. 289 ka for the detected cryptotephras layers. Geochemical analyses of these highly weathered ignimbrites were carried out by Belkin et al. (2016); however, the generated whole-rock data exhibit highly altered major-element compositions that are not suitable for comparison with the Tenaghi Philippon cryptotephras glass data. Pristine major-element glass compositions from the younger Taurano Ignimbrite (c. 157.4 ka; De Vivo et al., 2001) show, however, that the ignimbrite has a trachyphonolitic chemistry (Amato et al., 2018) that is less evolved than the CI (Figs. 5c and S4); based on trace-element data, Belkin et al. (2016) propose it to be similar to the older Seiano Ignimbrite. Together with the compatible ages, this inference supports a tentative correlation of all four cryptotephras layers with the Seiano Ignimbrite. Based on the observation that in both cores the stratigraphically older cryptotephras layers (i.e., TP05-56.475 and TP09-55.095) are less evolved than the stratigraphically younger cryptotephras layers (i.e., TP05-56.41 and TP09-55.045), the two cryptotephras levels may represent different explosive phases of the Seiano eruption with the repose time of ~400 years based on palynostratigraphic age control.
6.2 Cryptotephras of Santorini provenance (TP09-61.35, -60.935, -60.85, -60.65, -60.335, -60.25, -60.055a, and -59.245)

Seven medium- to high-K calcalkaline rhyolitic cryptotephra layers of glass population POP3 (TP09-61.35 to TP09-59.245) and one dacitic calcalkaline cryptotephra layer of glass population POP2 (TP09-60.335) best match Santorini tephra compositions in both major- and trace-element plots (Figs. 6a, 7, S5 and S6). Middle and Late Quaternary activity of Santorini is documented by twelve major and numerous minor pyroclastic units of the Thera Pyroclastic Formation (Druitt et al., 1999). When compared to other volcanoes of the South Aegean Arc, Santorini is characterized by generally less evolved tephra compositions (Druitt et al., 1999).

All cryptotephra layers are closely spaced, with the ages of the rhyolitic cryptotephras ranging between 324 and 313 ka and the age of the dacitic layer being c. 318 ka. In the Santorini tephrostratigraphy, this timing corresponds to the interval between the Cape Therma 1 (CTM-1) and Cape Therma 2 (CTM-2) pyroclastic deposits with ages of ≤360 ka and c. 224 ka, respectively, based on K-Ar dating of underlying and overlying lavas (Druitt et al., 1999). Interplinian explosive activity during that time is represented by the minor pyroclastic unit M2 of Druitt et al. (1999). The first distal equivalent of the CTM-1 eruption was recently discovered at Tenaghi Philippon (TP09-65.95, c. 359 ka; Vakhrameeva et al., 2018). The same study also reported a younger cryptotephra layer (TP09-63.015b, c. 336 ka) that represents a yet unknown Santorini eruption within the M2 unit. Because tephrochronological information on the M2 deposits is still lacking, we have compared the cryptotephra layers reported in this study with recently obtained major-element glass data (Vakhrameeva et al., 2018) from older and younger proximal Santorini units, i.e., CTM-1, CTM-2, and Cape Therma-3 (CTM-3) as well as two M1 pumice-fall deposits below CTM-1 (Figs. 6a and S5).
The compositions of the seven rhyolitic cryptotephras are well constrained and partly fall within the extensively overlapping fields of the M1 and CTM-2 glass compositions. In contrast, the dacitic cryptotephra TP09-60.335 displays a major-element composition resembling that of the CTM-1 and CTM-3 tephras (Figs. 6a and S5). This might be indicative for M2 interplinian activity that produced at least two geochemically distinct tephra deposits between 324 and 313 ka.

6.3 Cryptotephras of undefined Aegean Arc provenance (TP09-60.055b and -59.95b)

Two high-silica rhyolitic cryptotephra layers of glass population POP4 geochemically resemble the compositions of tephra deposits from several volcanic provinces including the Aeolian Islands, eastern Carpathians, Aegean Arc, and central Anatolia (Figs. 7 and S6). Based on the age estimates of c. 317 and 316 ka, they most likely represent one single eruptive event. Since cryptotephra TP09-60.055b is situated within an interval containing other tephra components that are considered reworked, we interpret the younger cryptotephra TP09-59.95b (316 ka) as the likely primary layer. A cryptotephra layer with a very similar geochemical fingerprint was identified in the MIS 10 interval of the Tenaghi Philippon archive at c. 358 ka (TP09-65.835b); this tephra most likely derives from Aegean Arc volcanoes, such as Methana, Milos, or Kos (Vakhrameeva et al., 2018). Explosive activity of these sources during the considered time range is represented by the Chelona Series from the Methana peninsula (c. 380–290 ka; Fytikas et al., 1976; Gaitanakis and Dietrich, 1995; Matsuda et al., 1999), the Trachilas complex of Milos (370±90 ka; Fytikas et al., 1986), and the Kefalos Series of Kos (c. 550 ka, maximum eruption age; Pasteels et al., 1986; Bachmann et al., 2010). The available glass and whole-rock geochemical data for the pyroclastic deposits from Milos and Kos show a close fit with cryptotephra layers TP09-60.055b and TP09-59.95b, but too few
compositional data exist for Methana volcanics in order to test any correlation (Figs. 6b and S5). More definite tephra assignments will require more tephrochronological data for the Middle Pleistocene of the Aegean Arc and other Mediterranean volcanic sources.

6.4 Cryptotephras of Aeolian Arc sources (TP09-60.35, -59.995, -59.935, -59.85, -59.45, and -55.35)

Six cryptotephra layers in the MIS 9 interval of the TP-2009 core have a homogenous rhyolitic composition (here defined as glass component POP6) that resembles both the composition of younger Aeolian Arc (specifically Lipari) and eastern Carpathian tephras (Figs. 7 and S6). The trace-element compositions of these cryptotephra layers show strongly depleted HFSE and REE relative to LILE (Figs. 7b and S6), indicating affinity to subduction-related tectonic settings (Figs. 4d and S3). Furthermore, because the depletion in HFSE and enrichment in LILE are more pronounced in active or recent subduction settings than in post-subduction settings (Tomlinson et al., 2015), the source of population POP5 is to be sought among active subduction settings. This suggests an origin of the detected cryptotephra layers from Aeolian Arc volcanoes rather than from the eastern Carpathian region. The distribution of cryptotephra occurrences in the analyzed interval of the TP-2009 core shows two temporal clusters that might relate to two distinct eruptive events. The first narrowly spaced cluster of five layers (TP09-60.35 to TP09-59.45) covers the time interval between 318 and 314 ka. It consists of a proposed primary cryptotephra layer TP09-59.935 (c. 316 ka) with the highest glass-shard counts and lower-concentrated, over- and underlying, likely redeposited layers. The second cluster is formed by the geochemically similar cryptotephra layer TP09-55.35 that is dated at c. 290 ka. However, since tephostratigraphies of the Aeolian Islands and specifically Lipari volcano are still poorly constrained for the MIS 9 time interval, more detailed correlations are not yet possible.
6.5 Cryptotephras of unknown origin (TP05-56.45, -50.75, -50.55, -50.45, and -50.05)

Five cryptotephra layers from the MIS 9 (TP05-56.45; 289 ka) and MIS 7 interval (TP05-50.75 to TP05-50.05; 240–235 ka) in core TP-2005 exhibit a peculiar heterogeneous rhyolitic glass composition (POP5) that stands out by high and variable CaO (2.9–7.0 wt%), very low FeO (0.15–0.66 wt%), and extremely variable Na₂O concentrations (0.4–2.6 wt%; Figs. 7a and S6). The major-element chemistries of these layers are comparable with previously reported cryptotephra layers from the MIS 12 interval at Tenaghi Philippon (Vakhrameeva et al., 2018; Figs. 7a and S6). To date, neither proximal nor distal tephra deposits have been reported from the Eastern Mediterranean volcanic region with respective geochemical glass composition, hindering the allocation of these cryptotephra layers to specific sources.

7 Tephra-based correlation of TP-2005 and TP-2009 cores

The identification of a cryptotephra layer that most likely represents the Seiano eruption from the Campanian Volcanic Zone (compare Section 6.1.3), provides a first-order tie point for the correlation of the two cores. This cryptotephra layer has an older (samples TP05-56.475 and TP09-55.095) and a younger (samples TP05-56.41 and TP09-55.045) component in both cores, with the components having an age difference of ~400 years based on palynostratigraphic age control. Although we consider both components to represent primary fallout deposits that derived from two different phases of the Seiano eruption, we define the stratigraphic position of the tie point at the level of the older cryptotephra component at c. 289 ka because of its higher glass-shard concentration (Table 1). This cryptotephra tie point provides independent validation of the core correlation as previously carried out via XRF-scanning-derived elemental data (compare Section 4).
Comparison of the sequences of cryptotephra layers identified in the TP-2005 and TP-2009 cores across the overlap interval shows that one cryptotephra layer (i.e., TP05-56.45) has been registered only in core TP-2005, whereas another cryptotephra layer (i.e., TP09-55.35) was only found in core TP-2009. Because the coring sites are located only 4.4 km apart from each other within the same, sharply confined basin, this discrepancy appears at first sight difficult to explain. However, similar observations have previously been made on crypto- and macrotephras from peat bogs (Bergman et al., 2004; Watson et al., 2015) and lakes (Boygle, 1999; Pyne-O'Donnell, 2011). Notably, the distances between the coring sites were in these cases often even smaller than between the TP-2005 and TP-2009 sites, ranging from ~1000 m (Boygle, 1999) to as little as 10 m (Pyne-O'Donnell, 2011); moreover, the cryptotephra shard abundances were much higher (tens to thousands of shards per cm$^{-3}$) than in the present study (Table 1).

Irrespective of these findings, a number of studies has shown that (crypto)tephra layers tend to have an uneven distribution within a basin, often with a high spatial variability of glass-shard concentrations (Pyne-O'Donnell, 2011; Watson et al., 2015) or even being present as discontinuous horizons only (Boygle, 1999; Bergman et al., 2004; Pyne-O'Donnell, 2011). In light of these observations and considering the low glass-shard counts of 1 shard/g$_{dwt}$, it appears highly plausible that the cryptotephra layers TP05-56.45 and TP09-55.35 were only detected in one of the cores.

Another factor that may have caused a patchy tephra distribution in the Philippi peatland is to be sought in the local meteorological conditions that led to uneven ash deposition from the atmosphere (Watson et al., 2015). In this respect, local rainfall may have played a particularly important role as it can considerably increase the fallout of ash particles within a localized area (Langdon and Barber, 2004). Chemical alteration and post-depositional dissolution of volcanic glass in peatland environments may also affect tephra-shard concentrations (Blockley et al., 2005). Support for such a scenario comes
from laboratory experiments; they have suggested that the lifetimes of natural rhyolitic and basaltic shards with radius of 1 mm in soils are on the order of 4500 and 500 years, respectively (Wolff-Boenisch et al., 2004).

8 Conclusions

High-resolution cryptotephra study of the MIS 9 to 7e interval at Tenaghi Philippon yielded 27 cryptotephra layers that potentially constitute primary fallout deposits. Based on their geochemical compositions and palynostratigraphically derived ages, most of these cryptotephra layers could be firmly or at least tentatively assigned to their volcanic/eruptive sources in the Central and Eastern Mediterranean regions.

Six trachyphonolitic cryptotephra layers clearly originate from the Campanian Province in Italy. Remarkably, four of them were deposited c. 289 ka ago and thus match temporally with the oldest ignimbrite exposed in the Campanian Volcanic Zone (i.e., the Seiano Ignimbrite). However, due to the lack of unaltered compositional data for the Seino Ignimbrite, only a tentative correlation is yet possible. Two other trachytic cryptotephra layers at c. 316 and 313 ka indicate yet unreported eruptions of Campanian volcanic centers. Six rhyolitic cryptotephra layers possibly relate to explosive activity of another Italian volcanic province, i.e., the Aeolian Arc and in particular Lipari volcano, although the volcanic history of these sources during that time is still largely unknown. The cryptotephras appear to derive from two eruptive events at c. 316 and 290 ka.

Aegean Arc volcanism is represented by eight rhyolitic and dacitic cryptotephra layers from Santorini volcano. They are likely to record M2 interplinian activities at Santorini with at least two unknown source eruptions between 324 and 313 ka. Two rhyolitic cryptotephra layers that were palynostratigraphically dated at c. 317 and 316 ka most probably resulted from one single eruption, either on Kos or Milos. The provenance of
five rhyolitic cryptotephra layers with ages clustered at c. 289 ka and 240–235 ka remains yet unknown.

Our tephrostratigraphic results have yielded the first distal tephra record for the MIS 9–7e interval of the Eastern Mediterranean region. Notably, because the cryptotephra layers identified at Tenaghi Philippon are sourced from both Italy and the Aegean Arc, the tephrostratigraphic lattices of the Central and Eastern Mediterranean regions can now be linked. The fact that a number of the cryptotephra layers from Tenaghi Philippon could not be correlated to volcanic sources, let alone specific eruptions, highlights the need for further study of Mediterranean volcanoes and their activity during the Middle Pleistocene.

Further proximal and distal tephra studies that include the in-depth characterization of tephra units via geochemical glass analyses and dating techniques are required in order to establish a complete tephrostratigraphic record for the Eastern Mediterranean region. Our tephrostratigraphic results also proved instrumental in critically assessing the correlation of core material from the Tenaghi Philippon archive. The occurrence of a cryptotephra layer at c. 289 ka that likely represents the Seiano eruption in both cores studied confirms previously established core correlations based on palynological and XRF core-scanning data.

Acknowledgments

Bjarne Friedrichs, Gonca Gençalioğlu Kuşcu, Biagio Giaccio, Jörg Keller, Niklas Leicher, Fabrizio Marra, Paola Petrosino, and Gianluca Sottili are thanked for discussions. Frederik Allstädt, Monika Doubrava, Ilse Glass, and Alexander Varychev provided technical assistance. This study received financial support by the Deutsche Forschungsgemeinschaft (DFG) to AK and JP (grants KO4960/3 and PR651/19).

References
and geochemistry of Late Quaternary tephra layers in the Aegean Sea and the
Marani, M., Muller, W., Menzies, M.A., 2012. Marine-continental tephra
correlations: Volcanic glass geochemistry from the Marsili Basin and the Aeolian
Islands, Southern Tyrrhenian Sea, Italy. Journal of Volcanology and Geothermal
Research 229–230, 74-94.
3. Albert, P.G., Tomlinson, E.L., Lane, C.S., Wulf, S., Smith, V.C., Coltelli, M., Keller,
J., Lo Castro, D., Manning, C.J., Muller, W., Menzies, M.A., 2013. Late glacial
explosive activity on Mount Etna: Implications for proximal-distal tephra
correlations and the synchronisation of Mediterranean archives. Journal of
Wulf, S., Zanchetta, G., Sulpizio, R., Müller, U.C., Pross, J., Ottolini, L., Matthews,
marker: a new diagnostic glass geochemistry, age estimate, and details on its
climatostratigraphical context. Quaternary Science Reviews 118, 105-121.
5. Albert, P.G., Tomlinson, E.L., Smith, V.C., Di Traglia, F., Pistlesi, M., Morris, A.,
geochemistry of pyroclastic deposits from the Aeolian Islands in the last 50 ka: A
proximal database for tephrochronology. Journal of Volcanology and Geothermal
Research 336, 81-107.
6. Amato, V., Aucelli, P.P.C., Cesarano, M., Filocamo, F., Leone, N., Petrosino, P.,
Rosskopf, C.M., Valente, E., Casciello, E., Giralt, S., Jicha, B.R., 2018. Geomorphic response to late Quaternary tectonics in the axial portion of the

7. Bachmann, O., Schoene, B., Schnyder, C., Spikings, R., 2010. The $^{40}\text{Ar}/^{39}\text{Ar}$ and U/Pb dating of young rhyolites in the Kos-Nisyros volcanic complex, Eastern Aegean Arc, Greece: Age discordance due to excess ^{40}Ar in biotite. Geochemistry, Geophysics, Geosystems 11, Q0AA08.

22. Fuller, S.A., 2015. Distribution of tephra from the 1650 AD submarine eruption of Kolumbo volcano, Greece. MSc thesis, University of Rhode Island, Ann Arbor, USA.

42. Lane, C.S., Chorn, B.T., Johnson, T.C., 2013. Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. Proceedings of the National Academy of Sciences 110, 8025-8029.

million years, and the climatostratigraphic nature of isotope stages and substages.

Quaternary Science Reviews 111, 94-106.

Quaternary Science Reviews 132, 129-145.

Marine Isotope Stage 12 to 10 interval (460–335 ka) at Tenaghi Philippon, Greece: Exploring chronological markers for the Middle Pleistocene of the Mediterranean region. Quaternary Science Reviews 200, 313-333.

Figure 1: Map of the Central and Eastern Mediterranean regions showing the locations of Tenaghi Philippon and the main volcanic centers active or potentially active during MIS 9–7e: A, Aeolian Islands; Ac, Acigöl; C, Ciomadul; CA, Colli Albani; CF, Campi Flegrei; Ch, Christiana Islands; E, Etna; ED, Erciyes Dagi; G, Gölcük; HD, Hasan Dagi; Is, Ischia; K, Kos; M, Milos and Antimilos; Me, Methana; N, Nemrut; P, Pantelleria; R, Roccamonfina; S, Sabatini; Sn, Sancy; St, Santorini; Sü, Süphan; V, Vico; Vs, Vulsini.

Figure 2: Lithostratigraphy, glass-shard counts, tree-pollen percentages, and normalized SiCLR intensities for the overlap intervals of Tenaghi Philippon cores TP-2005 and TP-2009. Cryptotephra layers occurring in both cores are highlighted in color (see Fig. 3 for details on color coding).

Figure 3: Cryptotephra record with glass-shard counts plotted against tree-pollen data for the MIS 9–7e interval at Tenaghi Philippon. Cryptotephra layers are color-coded to indicate their provenance as inferred in this study. MIS boundaries after Fletcher et al. (2013).

Figure 4: Cryptotephra layers within the MIS 9–7e interval at Tenaghi Philippon plotted in (A) total alkali vs. silica diagram (Le Bas et al., 1986); (B) K$_2$O vs. SiO$_2$ diagram (Peccerillo and Taylor, 1976); (C) K$_2$O/Na$_2$O vs. SiO$_2$ diagram; a close-up shows classification of Italian volcanic rocks based on K$_2$O/Na$_2$O ratio (modified after Peccerillo,
discriminating anorogenic, active-subduction and post-subduction tectonic settings. Tephras are grouped into color-coded geochemical populations. Rock types: A – andesite; B – basalt; BA – basaltic andesite; BTA – basaltic trachyandesite; D – dacite; F – foidite; L – latite; P – phonolite; PB – picrobasalt; PT – phonotephrite; R – rhyolite; S – shoshonite; SB – shoshonitic basalt; TB – tephrite or basanite; TP – tephriphonolite; Tr – trachyte; TrA – trachyandesite; TrB – trachybasalt; TrD – trachydacite.

Figure 5: (A) K_2O/Na_2O vs. SiO_2 and (B) Cl vs. CaO/FeO (modified after Giaccio et al., 2017b) diagrams showing comparison of trachyphonolitic cryptotephra layers (POP1) from Tenaghi Philippon with potential Italian volcanic sources; (C) major- and trace-element plots supporting correlation of the trachyphonolitic cryptotephra layers with Campanian volcanoes and individual eruptions. Asterisk (*) marks tephras with Campanian geochemical characteristics that are older than proximal Campanian volcanic rocks (c. 290 ka); cryptotephra layer TP09-70.45 from the MIS 12–10 interval at Tenaghi Philippon (Vakhrameeva et al., 2018) is shown separately. Data sources: Campi Flegrei (Campanian Ignimbrite, pre- and post-Campanian Ignimbrite series) – Smith et al. (2011, 2016), Tomlinson et al. (2012a); Etna – Wulf et al. (2004, 2012); Albert et al. (2013); Ischia – Tomlinson et al. (2014, 2015); Old Campanian Tephra – Giaccio et al. (2013, 2014), Petrosino et al. (2014, 2015), Leicher et al. (2016); Pantelleria – Tamburrino et al. (2012), Tomlinson et al. (2015); Roccamonfina – Giaccio et al. (2014), Regattieri et al. (2016); Sabatini – Giaccio et al. (2014), Marra et al. (2014), Palladino et al. (2014); Taurano Ignimbrite – Amato et al. (2018); Vico – Marra et al. (2014), Palladino et al. (2014), Regattieri et al. (2016); Vulsini – Palladino et al. (2014).
Figure 6: Major-element bivariate plots showing (A) comparison of dacitic (POP2) and rhyolitic (POP3) cryptotephra layers from Tenaghi Philippon with Santorini pyroclastic units; (B) comparison of rhyolitic (POP4, POP5 and POP6) cryptotephra layers from Tenaghi Philippon with potential Middle Pleistocene volcanic and eruptive sources from the Aegean Arc. Data sources: Kos – Dalabakis and Vougioukalakis (1993), Pe-Piper and Moulton (2008), Zouzias and St. Seymour (2008, 2013); Methana – Pe (1974); Milos – Koukouzas (1997), Koukouzas and Dunham (1998), Filippou (2014); Santorini – Vakhrameeva et al. (2018).

Figure 7: (A) Major- and (B) trace-element bivariate plots showing comparison of dacitic and rhyolitic cryptotephra layers from Tenaghi Philippon with volcanic centers in the Mediterranean region: Aegean Arc, including Quaternary rocks of Methana, Milos, Kolumbo, Kos, Nisyros, Yali, and (plotted separately) Santorini; Aeolian Islands, including Salina and Lipari; western (Gölcük), central (Acigöl; Erciyes Dagi), eastern (Nemrut, Süphan) Anatolia and Carpathians (Ciomadul). Data sources: Aegean Arc – Pe (1974), Dalabakis and Vougioukalakis (1993), Koukouzas (1997), Koukouzas and Dunham (1998), Margari et al. (2007), Aksu et al. (2008), Pe-Piper and Moulton (2008), Zouzias and St. Seymour (2008, 2013), Tomlinson et al. (2012b), Cantner et al. (2014), Filippou (2014), Fuller (2015); Santorini – Druitt et al. (1999), Margari et al. (2007), Satow et al. (2015), Tomlinson et al. (2015), Vakhrameeva et al. (2018); Salina and Lipari – Albert et al. (2012, 2017); western and central Anatolia – Tomlinson et al. (2015); eastern Anatolia – Sumita and Schmincke (2013a, b), Schmincke and Sumita (2014), Macdonald et al. (2015); Carpathians – Karátson et al. (2016).
Table 1: Summary of cryptotephra samples in the MIS 9–7e interval of cores TP-2005 and TP-2009 including glass-shard counts, compositional groups, proposed origin, and estimated ages. Samples marked with an asterisk were not geochemically analyzed.

Table 2: Representative EPMA (non-normalized) and SIMS glass data of cryptotephra samples in the MIS 9–7e interval of cores TP-2005 and TP-2009.

Supplementary files

Supplement 1: Full EPMA and SIMS glass analytical data of cryptotephra layers from Tenaghi Philippon.

Supplement 2: Complementary tables and bivariate elemental plots supporting the interpretation.
Figure 1
Table 1

<table>
<thead>
<tr>
<th>Core</th>
<th>Tephra</th>
<th>TP-2005 depth range (m)</th>
<th>TP-2009 depth range (m)</th>
<th>Glass-shard counts per g dry weight</th>
<th>Number of analyzed shards</th>
<th>Geochemical population</th>
<th>Provenance</th>
<th>Age estimates (ka)</th>
<th>MIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP-2005</td>
<td>TP05-50.05</td>
<td>50.00–50.10</td>
<td></td>
<td></td>
<td>3</td>
<td>9</td>
<td>POP5</td>
<td>Unknown</td>
<td>235</td>
</tr>
<tr>
<td>TP-2005</td>
<td>TP05-50.45</td>
<td>50.00–50.50</td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
<td>POP5</td>
<td>Unknown</td>
<td>238</td>
</tr>
<tr>
<td>TP-2005</td>
<td>TP05-50.50</td>
<td>50.50–50.60</td>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td>POP5</td>
<td>Unknown</td>
<td>239</td>
</tr>
<tr>
<td>TP-2005</td>
<td>TP05-50.75</td>
<td>50.70–50.80</td>
<td></td>
<td></td>
<td>24</td>
<td>11</td>
<td>POP5</td>
<td>Unknown</td>
<td>240</td>
</tr>
<tr>
<td>TP-2005</td>
<td>TP05-56.41</td>
<td>56.40–56.42</td>
<td>55.03–55.05</td>
<td></td>
<td>7</td>
<td>5</td>
<td>POP1A</td>
<td>Campanian Province, Seiano Ignimbrite?</td>
<td>289</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-55.045</td>
<td>56.41–56.42</td>
<td>55.04–55.05</td>
<td></td>
<td>2</td>
<td>1</td>
<td>POP1A</td>
<td>Campanian Province, Seiano Ignimbrite?</td>
<td>289</td>
</tr>
<tr>
<td>TP-2005</td>
<td>TP05-56.45</td>
<td>56.40–56.50</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>POP5</td>
<td>Unknown</td>
<td>289</td>
</tr>
<tr>
<td>TP-2005</td>
<td>TP05-56.475</td>
<td>56.47–56.48</td>
<td>55.09–55.10</td>
<td></td>
<td>10</td>
<td>3</td>
<td>POP1A</td>
<td>Campanian Province, Seiano Ignimbrite?</td>
<td>289</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-55.095</td>
<td>56.47–56.48</td>
<td>55.09–55.10</td>
<td></td>
<td>2</td>
<td>1</td>
<td>POP1A</td>
<td>Campanian Province, Seiano Ignimbrite?</td>
<td>289</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-55.195*</td>
<td>55.19–55.20</td>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>289</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-55.35</td>
<td>55.30–55.40</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>POP6</td>
<td>Aeolian Arc, Lipari?</td>
<td>290</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-57.45*</td>
<td>57.40–57.50</td>
<td></td>
<td></td>
<td>0.1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>302</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-59.235</td>
<td>59.23–59.24</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>POP1C</td>
<td>Campanian Province</td>
<td>313</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-59.245</td>
<td>59.24–59.25</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>POP3</td>
<td>Santorini, M2 activities?</td>
<td>313</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-59.45</td>
<td>59.40–59.50</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>POP6</td>
<td>Aeolian Arc, Lipari?</td>
<td>314</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-59.85</td>
<td>59.80–59.90</td>
<td>0.2</td>
<td></td>
<td>1</td>
<td>1</td>
<td>POP6</td>
<td>Aeolian Arc, Lipari?</td>
<td>316</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-59.935</td>
<td>59.93–59.94</td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>POP6</td>
<td>Aeolian Arc, Lipari?</td>
<td>316</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-59.95a</td>
<td>59.90–60.00</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>POP1A</td>
<td>Campanian Province</td>
<td>316</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-59.95b</td>
<td>59.99–60.00</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>POP6</td>
<td>Aeolian Arc, Lipari?</td>
<td>317</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-60.05a</td>
<td>60.00–60.10</td>
<td>14</td>
<td></td>
<td>1</td>
<td>1</td>
<td>POP1B</td>
<td>Campi Flegrei, reworked CI</td>
<td>317</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-60.05b</td>
<td>60.00–60.10</td>
<td></td>
<td></td>
<td>7</td>
<td>1</td>
<td>POP6</td>
<td>Campi Flegrei, reworked CI</td>
<td>317</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-60.055a</td>
<td>60.05–60.06</td>
<td></td>
<td></td>
<td>6</td>
<td>3</td>
<td>POP4</td>
<td>Aegean Arc, Kos or Milos?</td>
<td>317</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-60.055b</td>
<td>60.05–60.06</td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
<td>POP3</td>
<td>Santorini, M2 activities?</td>
<td>317</td>
</tr>
<tr>
<td>Core</td>
<td>Tephra</td>
<td>TP-2005 depth range (m)</td>
<td>TP-2009 depth range (m)</td>
<td>Glass-shard counts per g dry weight</td>
<td>Number of analyzed shards</td>
<td>Geochemical population</td>
<td>Provenance</td>
<td>Age estimates (ka)</td>
<td>MIS</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-----------------------------------</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>------------</td>
<td>-------------------</td>
<td>-----</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-60.25</td>
<td>60.20–60.30</td>
<td>60.25</td>
<td>0.4</td>
<td>1</td>
<td>POP3</td>
<td>Santorini, M2 activities?</td>
<td>318</td>
<td>9</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-60.335</td>
<td>60.33–60.34</td>
<td>60.33</td>
<td>4</td>
<td>1</td>
<td>POP2</td>
<td>Santorini, M2 activities?</td>
<td>318</td>
<td>9</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-60.35</td>
<td>60.30–60.40</td>
<td>60.35</td>
<td>1</td>
<td>1</td>
<td>POP6</td>
<td>Aeolian Arc, Lipari?</td>
<td>318</td>
<td>9</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-60.65</td>
<td>60.60–60.70</td>
<td>60.65</td>
<td>0.5</td>
<td>2</td>
<td>POP3</td>
<td>Santorini, M2 activities?</td>
<td>319</td>
<td>9</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-60.85</td>
<td>60.80–60.90</td>
<td>60.85</td>
<td>4</td>
<td>1</td>
<td>POP3</td>
<td>Santorini, M2 activities?</td>
<td>320</td>
<td>9</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-60.935</td>
<td>60.93–60.94</td>
<td>60.935</td>
<td>3</td>
<td>1</td>
<td>POP3</td>
<td>Santorini, M2 activities?</td>
<td>321</td>
<td>9</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-60.95*</td>
<td>60.90–61.00</td>
<td>60.90–61.00</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>321</td>
<td>9</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-61.335*</td>
<td>61.33–61.34</td>
<td>61.33–61.34</td>
<td>3</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>324</td>
<td>9</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-61.35</td>
<td>61.30–61.40</td>
<td>61.35</td>
<td>0.4</td>
<td>1</td>
<td>POP3</td>
<td>Santorini, M2 activities?</td>
<td>324</td>
<td>9</td>
</tr>
<tr>
<td>TP-2009</td>
<td>TP09-61.85*</td>
<td>61.80–61.90</td>
<td>61.80–61.90</td>
<td>0.4</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>328</td>
<td>9</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>Tephra Provenance (wt%)</th>
<th>TP05-50.05</th>
<th>TP06-50.45</th>
<th>TP05-50.55</th>
<th>TP05-50.75</th>
<th>TP05-56.41</th>
<th>Campanian Province, Seiano Ign.?</th>
<th>Campanian Province, Seiano Ign.?</th>
<th>TP05-56.45</th>
<th>TP05-56.475</th>
<th>TP09-55.095</th>
<th>TP09-55.35</th>
<th>Campanian Province, Seiano Ign.?</th>
<th>Aeolian Arc?</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>73.31</td>
<td>73.94</td>
<td>71.33</td>
<td>71.95</td>
<td>57.44</td>
<td>61.44</td>
<td>75.69</td>
<td>57.77</td>
<td>56.54</td>
<td>73.36</td>
<td>0.20</td>
<td>73.36</td>
<td></td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.07</td>
<td>0.05</td>
<td>0.15</td>
<td>0.08</td>
<td>0.40</td>
<td>0.43</td>
<td>0.08</td>
<td>0.50</td>
<td>0.73</td>
<td>0.20</td>
<td>0.04</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>13.27</td>
<td>13.96</td>
<td>12.78</td>
<td>13.90</td>
<td>17.87</td>
<td>18.47</td>
<td>13.73</td>
<td>18.45</td>
<td>18.37</td>
<td>14.75</td>
<td>0.03</td>
<td>14.75</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>0.43</td>
<td>0.58</td>
<td>0.26</td>
<td>0.47</td>
<td>2.99</td>
<td>2.39</td>
<td>0.60</td>
<td>3.96</td>
<td>5.68</td>
<td>1.17</td>
<td>0.20</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.14</td>
<td>0.16</td>
<td>0.00</td>
<td>0.13</td>
<td>0.13</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>2.75</td>
<td>1.89</td>
<td>3.04</td>
<td>1.98</td>
<td>0.69</td>
<td>0.33</td>
<td>1.64</td>
<td>1.08</td>
<td>1.95</td>
<td>2.19</td>
<td>0.04</td>
<td>2.19</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>5.47</td>
<td>3.47</td>
<td>6.62</td>
<td>3.63</td>
<td>2.52</td>
<td>1.89</td>
<td>3.10</td>
<td>3.32</td>
<td>4.38</td>
<td>1.26</td>
<td>0.02</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>1.20</td>
<td>1.92</td>
<td>0.58</td>
<td>0.67</td>
<td>3.61</td>
<td>4.39</td>
<td>1.49</td>
<td>3.53</td>
<td>3.12</td>
<td>1.59</td>
<td>0.02</td>
<td>1.59</td>
<td></td>
</tr>
<tr>
<td>K$_2$O</td>
<td>2.87</td>
<td>3.33</td>
<td>2.76</td>
<td>4.53</td>
<td>9.01</td>
<td>7.32</td>
<td>3.32</td>
<td>8.49</td>
<td>7.69</td>
<td>4.72</td>
<td>0.03</td>
<td>4.72</td>
<td></td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.05</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>0.06</td>
<td>0.03</td>
<td>0.03</td>
<td>0.14</td>
<td>0.30</td>
<td>0.09</td>
<td>0.01</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.53</td>
<td>0.66</td>
<td>0.00</td>
<td>0.58</td>
<td>0.54</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>99.42</td>
<td>99.18</td>
<td>97.57</td>
<td>97.26</td>
<td>95.27</td>
<td>97.50</td>
<td>99.68</td>
<td>97.95</td>
<td>99.43</td>
<td>99.37</td>
<td></td>
<td>99.37</td>
<td></td>
</tr>
<tr>
<td>(ppm)</td>
<td></td>
<td>Rb</td>
<td>134.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr</td>
<td>48.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zr</td>
<td>19.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nb</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ba</td>
<td>475.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>La</td>
<td>21.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ce</td>
<td>40.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Th</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Tephra Provenance (wt%)</td>
<td>TP09-59.235</td>
<td>TP09-59.245</td>
<td>TP09-59.45</td>
<td>TP09-59.85</td>
<td>TP09-59.935</td>
<td>TP09-59.95a</td>
<td>TP09-59.95b</td>
<td>TP09-59.995</td>
<td>TP09-60.05a</td>
<td>TP09-60.05b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>59.85</td>
<td>66.31</td>
<td>72.66</td>
<td>75.22</td>
<td>71.42</td>
<td>60.82</td>
<td>75.36</td>
<td>72.48</td>
<td>61.18</td>
<td>62.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.37</td>
<td>0.45</td>
<td>0.11</td>
<td>0.12</td>
<td>0.15</td>
<td>0.37</td>
<td>0.10</td>
<td>0.08</td>
<td>0.40</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>2.92</td>
<td>3.08</td>
<td>1.40</td>
<td>0.95</td>
<td>1.76</td>
<td>3.26</td>
<td>1.40</td>
<td>1.69</td>
<td>3.45</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.13</td>
<td>0.13</td>
<td>0.02</td>
<td>0.01</td>
<td>0.04</td>
<td>0.13</td>
<td>0.03</td>
<td>0.00</td>
<td>0.07</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>0.57</td>
<td>0.49</td>
<td>3.05</td>
<td>2.73</td>
<td>2.41</td>
<td>0.77</td>
<td>0.03</td>
<td>3.62</td>
<td>0.80</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>1.43</td>
<td>1.78</td>
<td>1.20</td>
<td>2.03</td>
<td>1.69</td>
<td>1.68</td>
<td>0.83</td>
<td>1.78</td>
<td>2.64</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>7.08</td>
<td>4.58</td>
<td>1.50</td>
<td>0.96</td>
<td>1.44</td>
<td>4.38</td>
<td>2.95</td>
<td>1.34</td>
<td>3.32</td>
<td>5.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>4.84</td>
<td>2.74</td>
<td>4.55</td>
<td>3.53</td>
<td>4.43</td>
<td>7.74</td>
<td>4.60</td>
<td>4.60</td>
<td>9.21</td>
<td>7.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.11</td>
<td>0.09</td>
<td>0.06</td>
<td>0.05</td>
<td>0.07</td>
<td>0.12</td>
<td>0.00</td>
<td>0.05</td>
<td>0.19</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>0.45</td>
<td>0.24</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.37</td>
<td>0.11</td>
<td>0.00</td>
<td>0.35</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>97.04</td>
<td>94.05</td>
<td>97.53</td>
<td>98.73</td>
<td>99.51</td>
<td>98.10</td>
<td>98.42</td>
<td>99.20</td>
<td>100.18</td>
<td>99.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ppm) Rb</td>
<td>186.6</td>
<td>92.0</td>
<td>134.6</td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>111.6</td>
<td>70.7</td>
<td>67.9</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>23.0</td>
<td>49.9</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>228.4</td>
<td>328.7</td>
<td>17.1</td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>39.1</td>
<td>12.9</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>54.8</td>
<td>467.5</td>
<td>580.9</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>52.4</td>
<td>25.7</td>
<td>20.4</td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>94.4</td>
<td>56.5</td>
<td>38.0</td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>16.5</td>
<td>15.8</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>5.7</td>
<td>5.3</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Tephra</td>
<td>TP09-60.055a</td>
<td>TP09-60.055b</td>
<td>TP09-60.25</td>
<td>TP09-60.335</td>
<td>TP09-60.35</td>
<td>TP09-60.65</td>
<td>TP09-60.85</td>
<td>TP09-60.935</td>
<td>TP09-61.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provenance (wt%)</td>
<td>Santorini</td>
<td>Aegean Arc, Kos or Milos?</td>
<td>Santorini</td>
<td>Santorini</td>
<td>Aeolian Arc?</td>
<td>Santorini</td>
<td>Santorini</td>
<td>Santorini</td>
<td>Santorini</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>73.18</td>
<td>77.00</td>
<td>66.32</td>
<td>63.63</td>
<td>73.52</td>
<td>70.65</td>
<td>66.00</td>
<td>72.06</td>
<td>66.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.46</td>
<td>0.08</td>
<td>0.55</td>
<td>0.88</td>
<td>0.06</td>
<td>0.46</td>
<td>0.51</td>
<td>0.42</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>3.15</td>
<td>1.14</td>
<td>3.63</td>
<td>6.57</td>
<td>1.32</td>
<td>3.13</td>
<td>3.40</td>
<td>3.09</td>
<td>3.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.06</td>
<td>0.05</td>
<td>0.10</td>
<td>0.18</td>
<td>0.00</td>
<td>0.15</td>
<td>0.08</td>
<td>0.13</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>0.41</td>
<td>0.05</td>
<td>0.65</td>
<td>1.42</td>
<td>3.43</td>
<td>0.45</td>
<td>0.62</td>
<td>0.43</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>1.58</td>
<td>0.72</td>
<td>2.33</td>
<td>3.95</td>
<td>1.49</td>
<td>1.55</td>
<td>2.35</td>
<td>1.75</td>
<td>1.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.38</td>
<td>2.41</td>
<td>1.12</td>
<td>4.45</td>
<td>1.66</td>
<td>4.60</td>
<td>4.07</td>
<td>4.53</td>
<td>3.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>3.11</td>
<td>4.99</td>
<td>2.87</td>
<td>1.93</td>
<td>4.43</td>
<td>2.99</td>
<td>2.92</td>
<td>2.91</td>
<td>3.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.07</td>
<td>0.03</td>
<td>0.11</td>
<td>0.26</td>
<td>0.05</td>
<td>0.08</td>
<td>0.09</td>
<td>0.08</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>0.28</td>
<td>0.10</td>
<td>0.19</td>
<td>0.23</td>
<td>0.01</td>
<td>0.24</td>
<td>0.19</td>
<td>0.26</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.73</td>
<td>99.17</td>
<td>92.07</td>
<td>98.85</td>
<td>99.72</td>
<td>98.66</td>
<td>94.34</td>
<td>100.28</td>
<td>94.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(ppm)	Rb	104.0	136.7	115.3
	Sr	74.7	37.2	72.0
	Y	52.4	39.9	4.2
	Zr	317.2	133.9	15.7
	Nb	11.6	19.4	5.8
	Ba	463.8	871.6	615.8
	La	25.2	31.7	17.8
	Ce	54.5	65.2	33.0
	Th	12.5	11.7	5.6
	U	3.7	3.7	1.1
Table S1: Tie points used in the Si-based alignment of cores TP-2005 and TP-2009. Software: AnalySeries (Paillard et al., 1996).

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>TP-2009 Depth (m)</th>
<th>Offset (m)</th>
<th>Temporal offset (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.44</td>
<td>51.06</td>
<td>0.62</td>
<td>4.98</td>
</tr>
<tr>
<td>51.39</td>
<td>52.28</td>
<td>0.88</td>
<td>10.15</td>
</tr>
<tr>
<td>51.72</td>
<td>52.94</td>
<td>1.22</td>
<td>13.34</td>
</tr>
<tr>
<td>52.97</td>
<td>53.97</td>
<td>1.00</td>
<td>7.26</td>
</tr>
<tr>
<td>53.62</td>
<td>54.69</td>
<td>1.06</td>
<td>7.71</td>
</tr>
<tr>
<td>55.10</td>
<td>56.48</td>
<td>1.38</td>
<td>8.43</td>
</tr>
<tr>
<td>55.60</td>
<td>56.64</td>
<td>1.04</td>
<td>6.35</td>
</tr>
<tr>
<td>56.34</td>
<td>57.40</td>
<td>1.06</td>
<td>7.23</td>
</tr>
<tr>
<td>57.51</td>
<td>58.35</td>
<td>0.84</td>
<td>6.06</td>
</tr>
<tr>
<td>57.92</td>
<td>59.01</td>
<td>1.08</td>
<td>7.61</td>
</tr>
<tr>
<td>58.45</td>
<td>59.81</td>
<td>1.35</td>
<td>7.94</td>
</tr>
</tbody>
</table>

Table S2: Tie points used for the alignment of the tree-pollen record from core TP-2009 to that from the old Tenaghi Philippon core TF-II (Wijmstra and Smit, 1976; Van der Wiel and Wijmstra, 1987) for the 460–335 ka (Vakhrameeva et al., 2018) and 335–312 ka (this study) intervals using the orbitally tuned age model of Tzedakis et al. (2006). Software: AnalySeries (Paillard et al., 1996).

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>TP-2009</th>
<th>Age (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>59.23</td>
<td>312.22</td>
<td></td>
</tr>
<tr>
<td>59.52</td>
<td>314.51</td>
<td></td>
</tr>
<tr>
<td>60.04</td>
<td>316.68</td>
<td></td>
</tr>
<tr>
<td>60.77</td>
<td>319.85</td>
<td></td>
</tr>
<tr>
<td>63.15</td>
<td>336.85</td>
<td></td>
</tr>
<tr>
<td>64.63</td>
<td>349.07</td>
<td></td>
</tr>
<tr>
<td>66.60</td>
<td>364.04</td>
<td></td>
</tr>
<tr>
<td>67.98</td>
<td>376.61</td>
<td></td>
</tr>
<tr>
<td>68.57</td>
<td>379.50</td>
<td></td>
</tr>
<tr>
<td>75.54</td>
<td>423.39</td>
<td></td>
</tr>
<tr>
<td>75.98</td>
<td>430.00</td>
<td></td>
</tr>
<tr>
<td>76.64</td>
<td>433.06</td>
<td></td>
</tr>
<tr>
<td>78.71</td>
<td>440.43</td>
<td></td>
</tr>
<tr>
<td>79.84</td>
<td>446.69</td>
<td></td>
</tr>
<tr>
<td>80.79</td>
<td>452.88</td>
<td></td>
</tr>
<tr>
<td>81.67</td>
<td>455.78</td>
<td></td>
</tr>
<tr>
<td>81.90</td>
<td>458.00</td>
<td></td>
</tr>
</tbody>
</table>

References

Figure S1: Normalized Si\textsubscript{CLR} records for the overlap intervals of the Tenaghi Philippon cores TP-2005 and TP-2009 after core alignment. Dashed lines mark cryptotephra layers that are present in both cores.
Figure S2: Comparison of normalized Si_{CLR} intensities and percentages of steppic taxa in the 60–50 m interval of core TP-2005.
Figure S3: Complementary trace-element plots to Fig. 4 in the text.
Figure S3: (continued).
Figure S4: Complementary major- and trace-element plots to Fig. 5 in the text.
Figure S4: (continued).
Figure S5: Complementary major- and trace-element plots to Fig. 6 in the text.
Figure S5: (continued).
Figure S6: Complementary major- and trace-element plots to Fig. 7 in the text.
Figure S6: (continued).
Figure S6: (continued).
Figure S6: (continued).