arXiv:1111.6596v2 [astro-ph.CO] 27 Mar 2012

Thinking Outside the Box:
E [edts of Modes Larger than the Survey on Matter Power Spectrum Covariance

Roland de Putter’2, Christian Wagner!, Olga Mena?, Licia Verde!, Will J. Percival®
YIccC, University of Barcelona (IEEC-UB), Marti i Franques 1, Barcelona 08028, Spain
2Instituto de Fisica Corpuscular, Universidad de Valencia-CSIC, Spain
3Institute of Cosmology & Gravitation, University of Portsmouth,

Dennis Sciama Bldg., Portsmouth, POl 3FX, UK
(Dated: March 28, 2012)

Accurate power spectrum (or correlation function) covariance matrices are a crucial requirement
for cosmological parameter estimation from large scale structure surveys. In order to minimize
reliance on computationally expensive mock catalogs, it is important to have a solid analytic un-
derstanding of the di Lerent components that make up a covariance matrix. Considering the matter
power spectrum covariance matrix, it has recently been found that there is a potentially dominant
e [edt on mildly non-linear scales due to power in modes of size equal to and larger than the survey
volume. This beat coupling e [edt has been derived analytically in perturbation theory and while it
has been tested with simulations, some questions remain unanswered. Moreover, there is an addi-
tional e [edt of these large modes, which has so far not been included in analytic studies, namely the
e [edt on the estimated average density which enters the power spectrum estimate. In this article, we
work out analytic, perturbation theory based expressions including both the beat coupling and this
local average e [ect and we show that while, when isolated, beat coupling indeed causes large excess
covariance in agreement with the literature, in a realistic scenario this is compensated almost en-
tirely by the local average e [edt, leaving only [10% of the excess. We test our analytic expressions
by comparison to a suite of large N-body simulations, using both full simulation boxes and subboxes
thereof to study cases without beat coupling, with beat coupling and with both beat coupling and
the local average e [edt. For the variances, we find excellent agreement with the analytic expressions
for k < 0.2hMpc™?! at z = 0.5, while the correlation coe [Ciehts agree to beyond k = 0.4hMpc™1.
As expected, the range of agreement increases towards higher redshift and decreases slightly to-
wards z = 0. We finish by including the large-mode e[edts in a full covariance matrix description
for arbitrary survey geometry and confirming its validity using simulations. This may be useful as
a stepping stone towards building an actual galaxy (or other tracer’s) power spectrum covariance
matrix.

I. INTRODUCTION

Galaxy surveys (and surveys of other dark matter tracers) are an important tool for constraining cosmological
parameters and the tracer’s power spectrum (or its Fourier transform, the correlation function) is the most valuable
observable. It can be used to measure the scale of baryon acoustic oscillations (BAO, see e.g. [1-4]), which is a
particularly robust feature and a strong probe of dark energy through the measurement’s dependence on the expansion
history, but it is also common to use the full shape of the power spectrum to constrain cosmology (e.g. [5, 6]). In
order for these measurements to be useful for cosmology however, it is crucial to have an accurate estimate of the
observable’s covariance matrix. As surveys get larger, calculating such a matrix directly from simulations becomes ever
more challenging. In fact, large numbers of mock catalogs are required to estimate covariance matrices directly from
simulations and it is computationally very costly to create such numbers with the required volume and resolution.
Moreover, the covariance matrix is cosmology dependent so ideally one would either be able to generate a large
number of matrices for di Lerknt cosmologies, or show that this cosmology dependence can be safely neglected. This
requirement increases the number of mocks needed in the brute force method even further. It is therefore important
to develop a good analytical understanding in order to eventually rely less on simulations.

While the density of tracers may have a non-trivial relation with the dark matter density, a good first step towards
understanding the true covariance matrix is to study that of the dark matter power spectrum. The two main
complications in understanding the dark matter matrix are the mode mixing due to the finite survey volume and the
non-Gaussian nature of the matter overdensity field on small scales (k T-83lhMpc~!) due to non-linear evolution.
While the former is relatively straightforward to quantify ([7]), the latter e [edts are the subject of a large number of
studies [8-20], involving N-body simulations, perturbation theory and the halo model. For covariances on non-linear
scales, an important (but often overlooked) role is played by modes of wavelength comparable to and larger than the
survey size. In particular, [21, 22] found that the interplay of mode mixing by the survey window with non-linear
correlations between a pair of small-scale modes and a large mode, causes a covariance contribution proportional to
the power in super-survey modes, and that, in fact, this is the dominant contribution to the covariance matrix on
small scales. The added covariance a[edts both the variances and the o [=diagonal covariances. This e [edt is usually


http://arxiv.org/abs/1111.6596v2

called beat coupling (see also [13, 23-25]). A second consequence of the presence of modes larger than the survey
is that the average density (which is needed to construct the overdensity) estimated from the survey has a variance
itself, leading to an additional covariance contribution proportional to the large scale power. We will refer to this as
the local average e [edt.

In the standard approach to estimating covariances from N-body simulations, the power spectrum is calculated
using the full, periodic simulation volume. However, this completely misses the large e [edts discussed above because
there are no modes larger than the “survey” volume. In order to capture these e[edts, one thus needs to consider
either a subvolume of a (much) larger simulation, or implement a varying zero mode ([12]) in the simulations. While
some such studies have been performed (see e.g. [24, 25]), a systematic study, leading to a complete and well tested
analytic description has until now been lacking.

In this article, we aim to present such a study. We use a set of large (L = 2400h~*Mpc) N-body simulations and
study the aforementioned e [edts of large modes by considering significantly smaller subboxes (L = 600h~*Mpc), thus
imitating the real world scenario of a finite survey embedded in an infinite universe. We build an analytic model for
the covariance matrix, properly including the e [edt of the window function and describing non-linear e [edts using
perturbation theory. This description includes the beat coupling model from [21], but adds to this an analytic estimate
of the local average e [edt. The latter e [edt needs to be included when building a covariance matrix for a realistically
estimated power spectrum and has to our knowledge not been calculated analytically previously.

We compare our model to simulations at five redshifts in the range z = 0 — 2 and generally find excellent agreement
until well into the non-linear regime. Since we test several combinations of covariance matrix contributions individually
by employing dilerknt approaches to estimating spectra from simulations, we are confident that our theoretical
understanding of the dark matter covariance is correct and that we have captured the main e [edts.

One of our main results is that, while beat coupling indeed causes excess covariance which soon dominates, the
contribution from the local average e [edt cancels most of this out, leaving only a reduced beat coupling contribution
of about 10% of the original.

In addition to the e [edts on non-linear scales discussed above, the mode mixing due to the window function also has
a well known eledt on linear scales, correlating neighboring power spectrum estimators and reducing the variances.
This e [edt needs to be taken into account for a realistic survey. We calculate these covariances directly using analytic
expressions from [7] and show good agreement with simulations. Thus, while the main goal of this paper is to study
the beat coupling and local average e[edts related to super-survey modes, we also provide a complete expression
that can be used to calculate a (dark matter) covariance matrix for an arbitrary survey geometry and can serve as
a stepping stone for calculating a galaxy (or other dark matter tracer) spectrum covariance matrix. We also study
the cosmology dependence of the covariance matrix and find that for cosmological parameter variations relevant to
current cosmological constraints, the covariance matrix undergoes changes at the [30% level.

The outline of this article is as follows. We explain the analytic description of the covariance matrix in section 11,
using a simple formalism apt for the description of simulation results. This will lead to three expressions that can
be tested against simulations (without beat coupling, with beat coupling, and with beat coupling and local average
eledt). We then describe our N-body simulations in section 11l and compare the results to theory in section IV.
While for the main results in this paper, we stick to a simple description in terms of a discrete set of modes, we
discuss a more rigorous and complete treatment of the window function in section V, leading to expressions that can
be applied to arbitrary survey geometry. We conclude and summarize our work in section VI. Finally, we use our
analytic expressions to briefly discuss the cosmology dependence of the covariance matrix in the Appendix.

As this article is rather long and technical, we provide some recommendations for a reader on a tight schedule. On
a first reading, this reader may want to skip the mathematical discussion in section Il and jump straight to section
I1 E, where the main equations are summarized. Moreover, in section V, one could jump to Eq. (48), which presents
the final covariance matrix expression for general geometry, and then focus on the results in Figs 6-9, where the green
points and lines show the covariance matrix corresponding to said equation.

1. COVARIANCE MATRIX FORMALISM

In this section, we work out the formalism for calculating a covariance matrix for a power spectrum measured from
a cubic volume with uniform selection function, i.e. the geometry of N-body simulations. We describe the density field
in terms of a discrete set of modes, which significantly simplifies notation. We will provide a more general description,
which can be applied to an arbitrary survey geometry (following [7]), in section V. The more technical discussion
there also serves to motivate the simpler approach taken in this section.



A. N-body Simulation Geometry (Cubic Box)

We consider a cubic subvolume V = L3 of the universe (which later in this article will be modeled by taking a
subvolume of a much larger periodic simulation box). The matter overdensity field 6(x) = (p(x) — p)/p, where p(x)
is the matter density and p its mean, can be expanded as
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To significantly simplify notation, we choose to describe the density field in the volume V in terms of discrete Fourier
modes in analogy to the usual description of the density field in a periodic box, i.e. we e [edtively describe the field
in the subvolume by
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To be more exact, we define the discrete modes as
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In other words, dk is equal to the FKP estimator ([7]) F (k) (up to a factor V_%) applied to the volume V, and is
therefore a weighted average over a range of continuum Fourier modes. ( particular, while there is no true k = 0
mode, the subvolume sees an e [edtive zero mode (see also [12]) &g =V 1 v d3x 8(x) which gets its main contribution
from continuum Fourier modes |k| < 2n/L. Note that Eq. (2) is not to be taken literally, as the field is not actually
periodic with respect to the volume V. We discuss the e [edt of taking a subvolume more rigorously in section V.
The statistics of the discrete overdensity modes can be characterized by a sequence of connected n—point functions,
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where we have defined the power spectrum Py, bispectrum By xrxman the trispectrum Ty kokmgmm Note that these
are technically weighted averages of the true, continuum power, bi- and trispectrum, for example (see also section V)
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where jo(X) = sinx/x is the zeroth spherical Bessel function.
The power of an individual mode can be estimated as
P =V [8kl?, )

such that IﬁkD: Pk as desired, from which one can define a bin averaged estimator in order to maximize signal to
noise,
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Here, the sum is over all k = ZT" n, with integer components n;, such that k lies in some small range defining the i-th

bin. Nj; is the number of modes in i. The expectation value P; = IﬁiE: Py, , with k; a typical mode inside the bin.
We are interested in the covariance matrix of this bin averaged estimator,

Cij = [&lsi 6F’;j [ (7)



Starting from the covariances in the individual mode estimators,
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where we have introduced the shorthand notation T;; for the bin averaged trispectrum. The term proportional to the
power spectrum squared is diagonal and given by simply counting modes because the binning in k-space only includes
pairs of estimators that have zero covariance. As we will discuss in detail in section V, this is not in general the case
as the window function may correlate di Lerent bins.

B. N-body Simulation Geometry: Perturbation Theory

The power spectrum appearing in the first term on the right hand side of Eq. (9) is the full non-linear power
spectrum, which can be estimated directly from simulations. The trispectrum is harder to get from simulations (but
see [19]), but can be modeled using a variety of perturbation theory schemes or using the halo model. In this work,
we will use the simple framework of (Eulerian) standard perturbation theory (SPT; [8, 26-28]). Anticipating angle
averaging, i.e. modulo transformations k ~ —k and k"« —k the leading order trispectrum for the configuration of
interest is given as (see! [8, 27])
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where F, and F3 are the kernels for the second and third order contributions to the density field, as given in the
appendix of [28]. We can now distinguish two types of terms. The first two lines represent the “standard” trispectrum
contributions, that have always been included in PT studies of the trispectrum (see e.g. [8]). When no modes larger
than the survey are present, like in the artificial case of a power spectrum estimated from the full volume of a periodic
(N-body simulation) box, these are the only terms entering the trispectrum, giving
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We will evaluate Ti(}- numerically as no further analytic simplifications are possible.

C. The Beat Coupling E [edt

The third line in Eq. (10) is the beat coupling contribution, the importance of which has been realized only more
recently ([13, 21-25]). Our notation here requires some explanation (see also section V). Consistent with our discussion
in the previous section, quantities evaluated at k = 0 should really be interpreted in terms of an e [ective zero mode
arising from contributions at k < 2n/L, i.e. P{" =V [a3"|2 &= P'"(k [CmAL), generated by continuum contributions
T(k + [k + Gk ™ -k [y with 3+ [G= — (% () CTIL. Moreover, F», given by
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1 Note that the factor 16 in Eq. (7) of [8] should be a factor 8.



with |[[J XL (see section V for a more rigorous treatment of the beat coupling term with the same result). The
integral over the direction of [Cinakes this quantity well defined.
Using the fact that
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the beat coupling term can be angle (or bin) averaged analytically so that we end up with
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Physically, the presence of the beat coupling term is an interesting interplay of mode mixing due to the window
functions with correlations between pairs of non-linear modes and one larger mode (see [21]). Due to the finite volume
from which the power spectrum is measured, the estimator |5(k) really consists of a weighted average of pairs of
density modes d(k + DB (—(k + [9), with |[Jof order of the fundamental mode 2n/L. For k in the non-linear regime,
such pairs correlate with the large scale perturbation §([5- D)J which in turn causes the covariance between the power
spectrum estimators to be proportional to the power in these large modes. In our description, this is captured by
the power in the e[edtive zero mode. Note that the beat coupling creates an excess both in the variance and in the
o [=diagonal elements of the covariance matrix.

D. The Local Average E [edt

While the beat coupling term derived in the previous section adds significant covariance on non-linear scales, there is
an additional e [edt coupling small scale covariance to power in the zero-mode that plays a role in the power spectrum
estimated from an actual survey. This second e [edt is caused by the fact that to obtain the overdensity 6, one needs
an estimate of the average density p. In a realistic survey, one does not know the true average number density of, say,
galaxies, but instead has to rely on an estimate of the average density within the survey volume, which is modulated
by the zero mode &o. This results in a decrease in covariance, partially canceling the beat coupling e [edt?. We will
refer to this contribution as the local average e [eck.

The local average e[edt causes the true overdensity estimator to be given by
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Since p also appears in the numerator of 3, there technically is also a 8¢ contribution there. However, the Fourier
transform of the zero mode for non-zero wave vector k vanishes so this term can be omitted. Eg. (16) can be expanded
in powers of g to derive expressions for the n-point functions to the desired order in perturbation theory. For example,
to next-to-leading order, the expectation value of the power spectrum estimator becomes

(16)

BeO= Blo
K Bk 0k , s
= V[&(B—k 1_260+360+O 60 I:I

Bk,— P L ]
= Pk_2 K, k,0+3_0Pk+O P3/v2 i (17)
\% \%
The expectation value of the angle-averaged estimator is then
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Hence, the power spectrum receives a small bias due to the local average e [edt. The relative correction is T1§* for
a 1h—3Gpc? survey so it can be safely ignored for a realistic survey. Here, we have used that the bispectrum ([13])

Bk krxm= 2 Py PrcFa(k, kY + (cyclic) (19)

2 The di[erence between using the true and the local average was also commented on briefly in [29]



and we have applied the identity (14) to carry out the angle averaging.
Using the same approach for the covariance matrix, one gets to next to leading order
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where we have ignored a small relative correction to the diagonal term of order PA"/V . The local average e [€dt thus
introduces a term of the same form as the beat coupling term from the previous section, proportional to Py; Px; Po/V,
but with opposite sign. Comparing E?f@e [ciehts, one finds that the two e [edts almost entirely cancel out, Ieavmg
only a small positive coe [cieht, 16 188 = 1.5 [10% of the original beat coupling coe [cieht. Note that the
local average e[edt to this order conS|sts of contributions from the bispectrum and trispectrum, but also from terms
that would even be there had the field remained completely Gaussian (but that happen to be of the same order as
the leading non-Gaussian corrections).

Eqg. (20) thus gives us an expression for the most realistic case we will consider, where modes larger than the survey
are present and the spectrum is estimated using the local average in the survey volume.

E. Theory Summary and Outlook

In the remainder of this article, we will use N-body simulations to test the expressions derived above. We will
consider three dilerent cases which allow us to separately constrain dilerent combinations of contributions to the
total covariance:

e Case 1: periodic box
The spectrum is estimated from the full, periodic simulation volume. In this case, there is no beat coupling nor
a local average e[edt and the prediction for the covariance is to leading order

2
2Pk. 6'(
N;j

TS

Cij— V'

(21)
We obtain the (non-linear) power spectrum appearing above by applying the Halofit® prescription [30] to the
linear power spectrum calculated using CAMB [31]. The bin-averaged trispectrum Ti(j is given by Eq. (11),
where we make one modification. Instead of using the linear power spectra, we use the non-linear spectra. This
is consistent to the desired order in perturbation theory and turns out to slightly improve the accuracy of the
model on strongly non-linear scales.

e Case 2: subbox of periodic box
Since modes larger than the “survey volume” are now present, there is a beat coupling e [edt. The leading order
covariance prediction is
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Note that also for the additional trispectrum terms, we choose to use the non-linear power spectrum as opposed
to the linear one.

e Case 3: subbox of periodic box, using subbox mean
This is the most realistic case, where not only there are modes larger than the survey, but the overdensity
0 = (p(x) — p)/p is calculated in terms of the average density p of the subbox, as opposed to the “true” average
density of the full box. The leading order part of the covariance matrix is given by
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In the next section, we first describe the details of our simulations. We will discuss the results of our comparison
in section V.

3 We have checked that the di [&fknce between using the Halofit spectrum and the average simulated spectrum is small for k£ < 0.4h/Mpc.



I11. N-BODY SIMULATIONS

In order to test our analytic predictions we use a large suite of N-body simulations. We have two sets of simulations
consisting of 160 runs of a 2400h~*Mpc box with 7682 particles and 1024 runs of a 600h~*Mpc box with 1922 particles.
The initial conditions of the 160 and 1024 simulations were set up using di[erent realizations of a Gaussian random
field with the power spectrum given by CAMB. We adopted a flat ACDM cosmology consistent with the current
observational constraints [32]. The cosmological parameters are the present-day matter fraction Q, = 0.27, Hubble
constant h = 0.7, baryon fraction Q,h? = 0.023, spectral index ns = 0.95, and present-day normalization g = 0.7913.

The particles were displaced from their initial grid points according to second-order Lagrangian perturbation theory
using an initial redshift z; = 19.

The simulations were performed with the Tree-PM code Gadget-2 [33] taking only the gravitational force into
account. We applied a force softening of 70h~kpc and used a particle mesh of 2048° and 5123 for the 2400h~*Mpc
and 600h~'Mpc runs, respectively. Using a much higher resolution simulation, we checked that with these simulation
settings the power spectrum derived from the simulation data is accurate at the 1% level up to k < 0.2hMpc™?* and
remains accurate within 4% up to k < 0.4hMpc™? at all redshifts.

To compute the power spectrum from the simulation data, we assign the particles using the cloud-in-cell (CIC)
scheme to a regular grid with a fixed grid spacing of 1.5625h~*Mpc in all cases (full box, subbox, subbox with
zero-padding). Hence, the Nyquist frequency of the grid is the same in all cases, kny = 2h™*Mpc, which is 5 times
larger than the scales we consider in this paper k < 0.4hMpc™. Therefore we expect the e [edts due to finite grid
size (smearing and aliasing e[edts) to be very small. Nevertheless, we do correct for the smearing due to the CIC
assignment [34].

The simulations and the power spectrum computation needed about 300,000 CPU hours on our in-house cluster
Hipatia at ICCUB.

IV. RESULTS

We now compare the simulation results to the analytic predictions summarized in section Il E. For the covariances
of the full periodic box (Case 1), we compare to the 1024 simulations of the 600h~'Mpc cubed volume and to the
160 simulations of the 2400h~1Mpc cubed volume. To study the subbox Cases 2 & 3, we divide the L = 2400h—Mpc
volume into 64 smaller boxes with side L/4 = 600h~*Mpc each, which provides us with 160 x 64 = 10, 240 di [erknt
subbox realizations. ~

For each volume, we estimate the power spectrum P; in isotropic bins of width Ak = 0.01hMpc™ " in the range
k = 0— 0.4hMpc™1. We then estimate the covariance matrix for the full box, or for a particular subbox of it, by
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where the sum runs over all N, simulation realizations and [B; s the average power spectrum over simulations. In
the subbox case, we then improve the accuracy by averaging the subbox covariance estimate in Eq. (24) over all 64
subboxes. Note that, since the subboxes living in the same simulation volume are not independent, it would be wrong
to directly apply Eq. (24) to all N, = 10, 240 subboxes.

Since the non-linear eledts discussed in section Il become stronger with time, it is interesting to consider the
covariance matrix for a range of redshifts from z = 2 —0. We expect our analytic predictions to have the largest range
of validity at z = 2, as non-linear e [edts there are smallest.

In Fig. 1, we show results for the variances in the power spectrum, normalized by the variance based on mode
counting and the linear power spectrum. Case 1 is tested by both the full L = 2400h—'Mpc box case (black dots -
N-body results, black dashed - analytic) and the full L = 600h~*Mpc box case (red). The blue dots and dashed lines
test Case 2 and the green ones test Case 3. For all cases and at all redshifts, we find good agreement between theory
and simulation for bins up to a maximum value kmax that lies in the non-linear regime. The values for kmax are
reasonable given the range of scales over which perturbation theory is expected to be applicable, kmax COBhMpc™?t
at z = 2 to kmax [O15—0.2hMpc™! at z = 0.

We now comment on the three scenarios of interest individually.

e Case 1: periodic box
The L = 600h~*Mpc and L = 2400h—'Mpc full-box simulation results agree very well with each other, as
expected because they are both described by Case 1 and have no beat coupling. They also agree well with the
analytic prediction. This confirms that excess covariance is not simply caused by the mere presence of large
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FIG. 1: Power spectrum variance relative to variance based on linear spectrum and mode counting (2P3,/N; with N, the
number of modes per bin) for redshifts z = 0 — 2. The dots are results from N-body simulations and the (dashed) lines theory
predictions from Eqs (21)-(23), using perturbation theory (PT). The results in black and red represent the case where no modes
larger than the survey are present (but other non-linear contributions are included). The blue results represent the case where
these modes are present and thus display large excess covariance due to beat coupling. In the most realistic case (green), the
large modes also aledt the power spectrum through the estimated average density and this local average elect reduces the
excess covariance by [90%.



o o [—[, =2400
- - PT (no BC), 2400Mpc box
1.0 e o [=I,,/4=600 (true avg) 1
c i --- PT (with BC), 600Mpc box =
g "‘| e o =L, /4=600 (local avg) g
e ,l ll PT (with BC & local avg effect) &
S osl !‘\ * ¢ L=l =600 3
o I -~ PT (no BC), 600Mpc box O
c [ c
o o o
3 : l‘l . . 2588 s
- | TP OEE I T4 L] 34 M4 £ —
C oolatpd epeistpipritepsnsdisdliitizhidsiisg v
o ¢ ¢ . o
v} v}
z=2.0
0500 005 010 015 020 025 030 035 040 000 005 010 015 020 025 030 035 040
k[h/Mpc] Kk[h/Mpc]
1of 7 : : : : : : 1
i
I
0.8} i |
+J +J Il
c c I
Q0 Qo8 1
2 2 I
1
© @ oaf il 1
o o I
S S A
c c 02t it Cvee®ete
o [e) 1 1 ege0®®°”8 K R O PO Y
= = 1 osesiet g taaggnetjesaalidtlorsy
© © 00:_,!!_,* o, ,v.:{“-;. ° e o 1
L = o0.0}s .
[} [0} o 03 .
_ j— L]
S S
0 o 02 1
z=0.5
0.4 1
000 005 010 015 020 025 030 035 040 000 005 010 015 020 025 030 035 040
k[h/Mpc] K[h/Mpc]
o
c
Q@ 1
=
=
() . 1
8 e eance®ee0000e oo
o ¢t 8oy ons ool
8o 2898
'_f_,—D "‘t O‘O_r.:.:O. ‘.. °8°
© * i
o
—_
3]
S -o2r 1
z=0.0
0.4} 1
0.00 005 010 015 020 025 030 035 040
k[h/Mpc]

1
FIG. 2: Correlation coe [cights p;; = C;;/ Ci; C;; of i-th bin at k on x-axis, relative to j-th bin at k = 0.04 — 0.05hMpc™?.
Same comparisons and color coding as in Fig. 1. The beat coupling causes a significant increase in the o [Cdiagonal correlations
(blue), but this is again undone by the local average e [edt (green). The e [edt is described well by Eqgs (21)-(23).



correlation coefficient

correlation coefficient

e o L—I, —2400 ]
- - PT (no BC), 2400Mpc box
10 e o [=I, /4=600 (true avg) 1 |
- PT (with BC), 600Mpc box c
e o [=[, /4=600 (local avg) g 1
PT (with BC & local avg effect) E
os o o L=I,, =600 v 1
. - - PT(no BC), 600Mpc box O esesoasenectes?
00e08®”
S
0000000 o
._._..o.lro..Q.-.-..'..‘. 8. . Jr_ul
° 880%0e =
oolest Seguefatssioneilte®osy 3
' oo ° =
* * 9 .02} 1
S -o
z=2.0 z=1.5
0.4fF 1
0500 005 010 015 020 025 030 035 040 000 005 010 015 020 025 030 035 040
k[h/Mpc] Kk[h/Mpc]
1o . 'l“ . . . . . 1 Lof . 1“ . . . . . 1
! i
il it
0.8 1"' 4 0.8f J‘( 1
I + i",
it C K
0.6 it 1 QL o.6f i 1
1 (¢} it
1 = I eoedeeneso
] { 0090
0.4 j b vesvesssseseass © o4 i IUTTL L 1
] 0005 % i -
I aetesl o i 3
ik L " ]
0.2 ¢ o § oy et
° "o'o.:.' » = -c'."'.,' 14
0.0 !’.‘k 3857 @ KRURNES { 1Y s ¢
[} .
° . [ ] L]
S
0.2 S -02f 1
z=0.5
-0.4 4 -0.41 4
000 005 010 015 020 025 030 035 040 000 005 010 015 020 025 030 035 040
k[h/Mpc] K[h/Mpc]
o
3
-~ ; 0000000000.00000
;,,L:J ; ..v.v‘._.,..co..
= v e
g o
(8] t “'3
c “ oo
S %7 0a®®°y i byept st e 00t T -
5 2 |
9_) .
—_
S 02} 1
z=0.0
0.4t 1
0.00 005 010 015 020 025 030 035 040
k[h/Mpc]

FIG. 3: As in Fig. 2, but here correlation coe [ciehts relative to bin at k = 0.09 — 0.1hMpc™! are shown.

10



correlation coefficient

correlation coefficient

11

e o L—L, —2400 o 1
- - PT (no BC), 2400Mpc box
100 p|® ® L=Ly./4=600 (true avg) | - o8r 1
:| ---  PT (with BC), 600Mpc box c
1||® ® L=L,,/4=600 (local avg) g 0.6f 1
il -~ PT (with BC & local avg effect) £
osh Ile o L=L,,=600 g 0.4} P A A
; -~ PT (no BC), 600Mpc box o
y ey c 0.2} —
o* AO’I"" .-.-'..‘ . L4 ‘ Jr_UJ
® g, 06%9 ° S8goofoe8e862880°38 =
0_0,:-&3#:-;4%;::3# ._c:‘_: '.:-53?.3.---4‘-‘-.1’-, g :
. [X] L] S
S -02f 1
z=2.0 z=1.5
-0.4f E
0500 005 010 015 020 025 030 035 040 000 005 010 015 020 025 030 035 040
k[h/Mpc] Kk[h/Mpc]
Lof ‘ ‘ ‘ ‘ ‘ ‘ ‘ Lof ‘ ‘ \“ ‘ ‘ ‘ ‘ 1
b
&
0.8} 0.8} ki 1
"
o it
0.6 L o0.6f dop PP PUE LA A
2 e
e K
0.4r [J] B
o
ese® v
0.2 ®e e c
o o
fgeecasdotes s
L8 Ee@ ¥ 1
0.0% ".'o.'. oelee i)
. ° E .
S
-0.2F 1 S -02f 1
z=1.0 z2=0.5
-0.4f E -0.4f E
000 005 010 015 020 025 030 035 040 000 005 010 015 020 025 030 035 040
k[h/Mpc] K[h/Mpc]
Lof ‘ ‘ A ‘ ‘ ‘ ‘ 1
I
i
osl i, |
Ji,
-~ AR 000 g00e 00
c | ee0000® ')
D o6l :'. eso®®®® ]
=
[
D oaf
o
v}
c o2t
o
2
% 0.0
hat L]
S
S -o2f E
z=0.0
0.4t 1
0.00 005 010 015 020 025 030 035 040
k[h/Mpc]

FIG. 4: As in Fig. 2, but here correlation coe [ciehts relative to bin at k = 0.14 — 0.15hMpc~? are shown.



12

modes. The following two cases show that what matters is the presence of modes larger than the “survey”
volume.

e Case 2: subbox of periodic box
Beat coupling introduces a large amount of excess variance and is well described by perturbation theory (for
the range of scales discussed above).

e Case 3: subbox of periodic box, using subbox mean
As expected from theory, the local average e [edt undoes most of the excess variance due to beat coupling. Given
the noise in the simulation results, the Case 3 simulation results do not distinguish with much significance the
Case 3 theory prediction from the Case 1 prediction (but certainly from the Case 2 prediction). However, the
Case 3 simulation results do clearly display a larger variance than the Case 1 results at large k, looking consistent
with having [10% of the beat coupling excess variance.

In Figs. 2 - 4, we quantify the o[Cdiagonal correlations by plotting the correlation coe [ciehts between bins,

pij = = (25)

CiCij’

where we keep one bin fixed and let the value of k corresponding to the other one vary on the horizontal axis. The
fixed bins are at k = 0.05hMpc™? (Fig. 2), k = 0.1hMpc~* (Fig. 3) and k = 0.15hMpc™?* (Fig. 4).

The conclusions for the correlation coe [ciehts are similar to those drawn about the variances and again the analytic
and numerical results agree well. In fact, for Cases 2 & 3, there now is good agreement up to k = 0.4hMpc~1 for all
redshifts. We do note that the correlations relative to the k = 0.05hMpc ™! bin appear to be overestimated somewhat
by the analytic expressions. However, this is because the variance from simulations in the k = 0.04 —0.05hMpc ™! bin
is somewhat high due to noise. Since this variance appears in the denominator of Eq. (25), it brings the simulation
correlation coe Lciehts down, thus explaining the slight disagreement with the analytic result. The other deviation is
that the correlation coe [ciehts relative to the bins at wave number (k = 0.1hMpc~* and k = 0.15hMpc™1) are higher
than expected for Case 1 at low redshift. Whereas they should theoretically not have a beat coupling contribution,
these correlation coe [ciehts behave as if they do get such a contribution similar to the one in the scenario with beat
coupling and the local average e [edt (Case 3). This may simply be due to non-linear e [edts beyond the order included
in our theoretical expressions. Other than this, the agreement is very good.

To conclude this section, we use our analytic expressions to quantify the importance of non-linear corrections to the
covariance matrix on a range of scales relevant to large scale structure surveys. In the left panel of Fig. 5, we show
the theory based variance, at redshift zero, taking into account all non-linear e [edts (green), and taking into account
everything except for the beat coupling and local average e [edts (red). The figure is the same as in Fig. 1, except that
the focus is on the theory curves in the range k = 0 — 0.2h/Mpc. We see that the full non-linear corrections change
the variance at the 25% level at k = 0.15h/Mpc and by [50% at k = 0.2h/Mpc. For comparison, we also show
in dashed blue the variance if we do not take into account the reduction in excess variance due to the local average
el[edt. Neglecting to take the latter e [edt into account would lead to a gross overestimate of the non-linear variance.

To quantify the e[edt of not only the non-linear corrections to the diagonal of the covariance matrix, but also of
the non-diagonal elements, we next calculate the squared signal-to-noise ratio,

1
(S/N)?(Kimax) = Cili, P (i) P (). (26)

Ki,Kj <Kmax

The sum here is over all pairs of power spectrum bins with both central k values below kmax. For P (kj), we use
the (non-linear) power spectrum in the fiducial model, so that S/N can be thought of as a detection (or amplitude)
signal-to-noise. The top figure of the right panel of Fig. 5 shows this statistic using a (diagonal) linear covariance
matrix (based on mode counting; black curve), the full non-linear matrix (green), and the non-linear matrix with
the o [=diagonal elements set to zero (dashed green). The bottom figure shows the relative di[erknce with the linear
signal-to-noise squared. Compared to the linear case, the non-linear, but diagonal covariance matrix indeed decreases
the signal-to-noise, as expected from the increase in variance seen in the right panel. However, the o[-diagonal
elements have a significantly stronger e [edt and decrease the signal-to-noise even further. The signal-to-noise gives an
idea of how much Fisher matrix elements in a parameter forecast, or X2 values in a Monte Carlo chain, are a [edted
by the non-linear corrections to the covariance matrix. This means that when a power spectrum study, whether with
real data or in a Fisher forecast, includes k modes well into the non-linear regime, it is not enough to just include
non-linear corrections into the variance of the power spectrum. Instead, the full non-linear covariance matrix needs
to be taken into account.



13

12000 : . . -
3 — linear )/
< L6 10000}| — non-linear ,
s Py - - non-linear, diagonal only ,
> =
o & 8000-
£ 14r -
€ o
5 > 6000}
=

g s
3 12 2 4000t
: :
£ 3
5 2000
£ 10
) 0

- 4 0.0F
e - - PT, with BC, no local avg effect % sl
2 o0.8L| — PT, with BC & local avg effect z = 05 . 04l
2 — PT, no BC & no local avg effect U o6}

0.00 0.05 0.10 0.15 0.20 800 0.05 0.10 0.15 0.20
k[h/Mpc] K[h/Mpc]

FIG. 5: Left Panel: Power spectrum variance relative to variance based on linear power spectrum and mode counting (2P2,/N
with N; the number of modes per bin) for redshift z = 0.5. The red curve represents the case where no modes larger than
the survey are present (but other non-linear contributions are included). The most realistic case is depicted in green and
includes the beat coupling and local average e[edts. Non-linear e [edts cause an increase of variance of up to 50% on scales
k < 0.2h/Mpc. The dashed blue curve shows the variance when the local average e [edt is not taken into account. Right Panel:
Cumulative signal-to-noise squared in the amplitude of the non-linear power spectrum (see text for details) as a function of
largest k-bin included (top; bottom shows fractional di Lerknce relative to the linear matrix). The non-linear, o [=diagonal terms
in the covariance matrix give the strongest contribution to the decrease in signal-to-noise at large k.

V. GENERAL SURVEY GEOMETRY

So far, we have found it convenient to describe the statistics of the density field in terms of a discrete set of
overdensity modes. Whereas this is exact when considering the modes of a full periodic box, this should be considered
an eledtive description in the case of subboxes, justified by their simple geometry. In this section, we work out
the formalism for a general survey geometry in terms of the continuum of Fourier modes that exist in an infinite
universe. We closely follow the notation and results of [7], but will add to this the trispectrum contributions arising in
perturbation theory. The discussion in this section will provide justification for the discrete description of the previous
sections. One issue that we will pay particular attention to is the motivation for using the diagonal mode-counting
expression for the disconnected part of the covariance matrix in Eq. (9). As we will see, in the FKP formalism, the
window function correlates power spectrum estimators in dilerknt bins (even in the Gaussian case), and the mode
counting expression is not accurate. We will explain why mode counting was justified in the previous sections, argue
that for a realistic survey the FKP description including cross correlations is the relevant one, and finally test the
latter description against simulations.

We first define our Fourier convention as

— e
(2m)

3(x) = e X3 (K). 27)

The statistics of the continuum of Fourier modes are given by
BIk) 3(kY = (2n)3 P (k) 3P (k + kY
(k) 3(kYo(kH= (2n)°B(k, k5kT P (k + k™+ kT
BIK) S(kY s (kD skl = 2m)° T(k, kKT k™8P (k + k4 k™ k™
(28)

For a survey with background number density n(x), consider then the weighted density field

ﬁj(x)_w(x) o) /1 = G(X) 8(x), (29)
d3x n2(x) w2(x) 2

F(xX)=
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where w(x) is a weight function that can be chosen to maximize signal to noise. We will ignore shot noise in the
following, but it is straightforward to include it in the Gaussian approximation (see FKP). The Fourier transform
is given by F(k) = (G [a)(k), where “[lindicates a convolution, and the power spectrum can be estimated by
P (k) = |[F(K)|?, so that

B(k)EF e P (kY |G(k — KYJ2. (30)
The measured power spectrum is thus a weighted average of the true spectrum, with a weight function of width of
order the fundamental mode of the survey, i.e. Ak AL if L is the typical scale of the survey. As a relevant example,
the window function for a cubic box of side L (n = const, w = 1 inside the box and zero outside) is given by

G(K) = L¥? jo (Lkx/2) jo (Lky/2) jo (Lk./2), (31)

with jo(X) = sin x/x the zeroth spherical Bessel function. If the true spectrum varies little across this range of scales,
we get

B (K) 3= P (k). (32)

A. Covariances - disconnected (Gaussian) contribution

We first consider the contribution to the covariance between FKP power spectrum estimators arising from products
of two-point functions. This is the only contribution for a Gaussian density field and we can follow FKP for its
description.

We start from the two-point function

1 KD

gy PTG~ kGG k™= kG =P (9 k™ kY, (33)

B(k)F (k)=

where the second equality is true in the same limit where the (expectation value of the) power spectrum estimator
equals the true spectrum, and Q(K) is the Fourier transform of the (normalized) squared window function,

n2(x) w2 (x)
—
QI = oo W) (34)
Hence, the covariance
[@P (k) 8P (KJ 2= |P (k) Q(k — K2 + (k"= —KY. (35)
In FKP, the power spectrum in a bin i is given by
L] 3
fi= TXpa, (36)
i Vi,i
where Vi i is the k-volume of bin i, so that the covariance between (isotropic) bins is
1 1
d®k d3kH
Cy=2 [~ P RIRK-KJP 37)
i VKi j Vk,j

Because of the extended nature of the window function |G|?, there will thus be correlations between di [erent bins. In
the limit that the bin width is much larger than the width of this window function, these correlations are negligible
and one can make a further simplification by integrating out |G|?. Using

1 1,
d3k d3x n?(x) w*(x) _
- Q k 2 = o =V 1 38
Gy F = e 0@ = Ve (38)
one ends up with
_ 2P%(ki) sk _ Vi
TN T e )
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where kj is a typical mode in the i-th bin and we have further assumed that the power spectrum varies little across a
bin. This is the well know mode-counting result. The expression for the e [edtive volume is further simplified in FKP
by choosing an optimal weight function, but we will stick to general w(x). Note that for our cubic box (or any other
geometry with constant background number density and weighting), Ve V .

Assuming that embedding our Ls,, = 600h~*Mpc cubed box in a L = 2400h~*Mpc cubed periodic box is a good
approximation to embedding it in an infinite universe with a continuum of Fourier modes, we can apply the above
to our simulated scenario and find that for our bin width Ak = 0.01lhMpc™?, there should be significant correlations
between bins and the mode-counting argument is not valid, in fact overpredicting the variances. We show this in
figures 6 - 9, dashed lines, which we will discuss in more detail below.

Why then was it correct to use the diagonal, mode-counting expression in the previous sections? The reason is
that, in keeping with our e [edtive periodic box description, our bin average only includes modes which are multiples
of the subbox’s fundamental mode, i.e. k = 2n/L¢,, N with the components of n integers,

~ 1 L1
Pi=— P (K). (40)
Ni

This decorrelates the binned power spectrum estimators as the mode mixing kernel
Q(k) = jO (Lsubkx/2) jO (Lsubky/2) jO (Lsubkz/Z) (41)

vanishes for separations that are a non-zero multiple of 2n/Lsyp. Since the kernel equals unity for zero separation,
the covariance in this averaging scheme is given by the mode-mixing result,

C 1T 1T 1 1 )
Cij = Zii Pz(k) |Q(k — k§|2 = 6:? Zii p2(k) — 2P2(k|)

NiNjkI_T_RELj__I NiNjkIII i

5. (42)

This begs the question if a similar binning scheme can be applied to an actual survey, in order to decorrelate
power spectrum estimates in dilerent bins. Unfortunately, for a realistic survey, the geometry will be much more
complicated than a simple cube, making this rather di Ccult. In practice, therefore, one would typically embed the
survey in a much larger cubic volume (zero-padding the part not covered by the survey), apply a Fourier transform,
estimate the power spectrum for each k on the grid by the embedding box (i.e. modulo 2rn/L with L the size of the
large box), and finally average to obtain the binned spectrum. This is thus a much denser sampling than the one
we applied previously and approaches the infinitely dense FKP bin average of Eq. (36). In a more realistic scenario
therefore, mode counting would not be su [cieht and the o [_diagonal covariances are significant.

For this reason, it is useful to numerically test the mode mixing in the covariance matrix due to the window function
as given in Eq. (37). We do this by again calculating the covariance matrix for our Lg,, = 600h~'Mpc subbox, but
this time using a binned spectrum averaged over all multiples of the fundamental mode of the large L = 2400h~1Mpc
simulation box, thus increasing the sampling density by a factor of 4% = 64 and approaching the FKP bin average. In
practice, we zero-pad the exterior of the subbox and then apply the Fourier transform to the full box. The results are
shown in figures 6 - 9 and compared to the analytic expression (37). To model the inevitable non-linear e [edts, we
add trispectrum contributions to the theory prediction, which we will describe in the next subsection. Even without
these contributions however, we can already see from the linear regime that the FKP expression works very well and
that indeed with the more realistic averaging scheme, the o [diagonal covariances are considerable and the variances
are reduced accordingly.

To conclude this subsection, we briefly compare our beat coupling investigation to that of [25]. They too study the
beat coupling e [edt by considering a subbox of a larger simulation volume (although in their case the subbox is only
a factor 23 = 8 smaller than that of the simulation, Lsy, = 500h~3Mpc?). They use two approaches for estimating
the power spectrum. Their “zero-padding” treatment corresponds to the FKP-like method described in the preceding
paragraphs, while the other approach is equivalent to the one we used consistently before this section. While they
do not comment on the origin of the observed di [erknces, it is reassuring that the simulation results in their Fig.(10)
agree with our explanation and with our own simulation results. Interestingly, in [25], the excess covariance due to
large modes is significantly smaller than expected based on beat coupling only. However, they use the local (subbox)
average to calculate the overdensity. The lower variance can thus be explained very well by the local average a[edt
discussed in this article.

B. General Survey Geometry: Perturbation Theory

The discussion in the previous section covers the linear regime where the underlying density field is to a good
approximation Gaussian. Including non-linear e [edts, it still describes the disconnected contribution to the covariance
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FIG. 6: Power spectrum variance relative to (linear) mode-counting variance at redshifts z = 0 — 2 for Case 3, i.e. with both
beat coupling and the local average e [edt included. Comparison is between variances in spectrum averaged over bins (of width
Ak = 0.00lhMpc™1) with fine sampling (as in FKP, Eq. (40)), which has mode mixing due to the window function (magenta
dots), and average over modes that are multiples of fundamental mode of subbox (Eq. (36)), which decorrelates the power
spectrum estimator in bins (green dots). We also refer to the former case as the “zero padding” covariance matrix, as the power
is estimated from simulations by using the full 2400h~*Mpc simulation box to do the Fourier transform, but zero padding the
region outside the 600h~*Mpc subbox. Dashed lines show theory predictions from Eq. (23) (green) and Eq. (48) (magenta).
The theory covariance matrix thus successfully includes window function e [edts and non-linear e [edts. On large scales (small
k), the green curve and dots approach unity because the bin averaging scheme causes the variance to be given by mode counting
and because non-linear e [edts vanish. The more realistic zero padding case however has significantly lower variances, but strong
correlations between neighboring bins (even on linear scales) so that the total information content is the same.
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FIG. 7: As Fig. 6, but here showing the correlation coe Lciehts p;; = C;;/ C;; C;; of i-th bin at k on x-axis, relative to j-th
bin at k = 0.04 — 0.05hMpc™t. The theory predictions again agree quite well with the simulation results although more so for
correlations relative to bins at larger k, as shown in Figs 8 and 9. Note in particular the large correlation between neighboring
bins in the case where the bin average is based on fine sampling/zero padding (Eg. (36), magenta). This is due to mode mixing
by the window function and is separate from the cross correlations due to non-linear evolution. It is absent when estimators
are averaged using the sparse bin sampling (green), Eq. (40).
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matrix provided that the non-linear power spectrum is used. However, additional terms are now needed as the
covariance matrix receives contributions from the connected part of the four-point function. These terms were already
included in the figures 6 - 9 (and were discussed in a simpler framework in section Il). Here we discuss the details of
the inclusion of the trispectrum terms for arbitrary window function.

Including these terms, the covariance between single-mode estimators now becomes

[P (k) 3P (kF = [P (k) Qg — kP> + (k™ —kT
+ e d*q10°020°q3d®qs 8°(g1 — g2 + 03 — 9a) G(A1)G "(42)G(93)G (Ga)
x T (k—d,—(k—02), k™= g5, (k"= qa)). (43)

Note that this is the generalization of Eq. (8), which we used to describe the covariance in a cubic box. To leading
order in perturbation theory, the trispectrum is given by* (see [8])

T (K1, K2, k3, Ka) = 4 [F2(Kaz, —K1) Fa(Kiz, —k3) P (kK1) P (K12) P (k3) + perm.]+6 [Fa(ka, k2, k3) P (k1) P (k2) P (k) + cyc],
(44)
with 12 distinct permutations for the first term, 3 cyclic permutations for the second, and where kj; = kj + k;.
Inserting the arguments from Eq. (43) into this perturbation theory expression, and omitting the qg; dependence
whenever g; appears in an argument as a correction to a larger vector of order k, k' |k + kY, etc, the trispectrum

contribution becomes
[ [

T (k= du,—(k=02), k"= gs, (K™= aa)) = 4P (k+KT) (Fa(k + KI=K)P (k) + (k - k))? + (K"~ —K')

+ 4P (K)P(KYP(laz — a1l) (F2(g2 — a1, K) + F2(02 — 01, —K)) (F2(dz — g1, K + F2(gz2 — 01, —kY)
+ 12P (k) P (kY [Fa(k, —k, kY P (k) + (k « kY] (45)

where we have used that the trispectrum arguments sum up to zero. The terms that are independent of the g;’s can
be pulled out of the integral in Eq. (43) so that the integral over mode mixing kernels simply gives a factor of Ve_él
The other terms only depend on the combination q; — g2 so that three of the four Fourier integrals can be carried
out analytically and one remains, giving the result

@P (k) 8P (K= |P(k?§(k— K92 + (k7= —KkY -

+ L AP (K + K (Falk + KI—K) P (K) + (K o K3)? + (7= —KJ

el
+ Vilzp(k)P(kS [Fa(k, =k, kI P (k) + (k - kY]

el T [
v Lapwrky LY jop)

\ (2m)3
3
5 QPP () (Fa(u ) + Fa(u, —K) (Fa(u KT + Fa(u —k%).  @6)

The final step towards a covariance matrix is to apply the bin average to Eq. (46), but for the trispectrum terms
the subtle, averaging related e [edts described in the previous subsection are not important because the correlations
from the trispectrum are not as narrow as those for the disconnected (or Gaussian) terms. The angle averaging can be
done analytically for the last term (the beat coupling term) and has to be carried out numerically for the remaining
trispectrum contributions. The final result is

1 1
d®k —d*k™
Cij =2 E Voo P?(k) |Q(k — k)I?
1 d*k  d°k
Verzm Viki Vi

TO(k, —k, k7 —K"
[ -

(I P -
1 17 d3u d3u
Y e W grplf@Pw) @7

4 Unlike in section 11, but consistent with perturbation theory, we now immediately express perturbation theory quantities in terms of
the non-linear power spectrum P and not P'n.
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where TO(k, —k, k5 —kY represents the second and third lines of Eq. (46). The last term is the beat coupling term,
which can now explicitly be seen to be proportional to a weighted average of the power spectrum over large modes. The
integral describing this average can be compared to that for the expectation value of the zero-mode power spectrum,
Eqg. (30). The only di[erknce is that the latter is given in terms of G while the former is given in terms of Q (note that
the normalization integral appearing in the beat coupling term is equal to one when Q is replaced by G). However,
for a cubic box (with n = const,w = 1 inside the box), the two quantities are exactly equal and the average appearing
in the beat coupling expression above can be replaced by the zero-mode power spectrum, thus justifying our use of
PJMin Eq. (15) in section |1 B.

We will not rederive the correction due to the local average e [edt for the case of arbitrary geometry, but in analogy
with the cubic subbox case, we will use the following expression for Case 3 in Figs 6-9:

1 1
Pk d*kY
Cy =2 — y—PAOIQK-K)
i P

1 d3k d3k
—_— — —— Tk, —k, k7 —k
Verm1 Vki Vi ( - )
1 676 d3u = d3u
(2m)3

T.o#l @ QPP w

1QI?(u)

Note that for a varying background density, the estimate of the background density p(x) used in 3(x) = (p(x) —
p(x))/p(x) is not only aledted by the eledtive zero mode, but also by smaller modes. These will also aledt the
covariance matrix, but we will not go into this e [edt here, as it is beyond the topic we set out to study.

VI. SUMMARY AND DISCUSSION

In this work, we have studied the e[edts of modes larger than the survey on the (dark matter) power spectrum
covariance matrix. We have built an analytic description that includes the beat coupling e [edt of [21], but also the
previously overlooked (at least in analytic studies) e [edt of large modes on the estimated average density p which
enters the overdensity through & = (p — p)/p (the local average e [edt). We have confirmed this model and the role
of individual contributions by comparing to covariance matrices obtained from N-body simulations. To study the
role of super-survey modes in the simulations, we estimated the power spectrum from a subvolume embedded in a
considerably larger simulation volume.

We summarize our main results below:

e We build a model based on perturbation theory for the matter covariance matrix that includes the e [edts of
modes larger than the survey. For the variances, we find excellent agreement with simulations for k < 0.4hMpc™?!
(or larger) at z = 2 and for k < 0.2(0.15)hMpc™! at z = 0.5(0). Agreement is even better for the correlation
coe [ciehts, with our model predicting the correct coe [ciehts for at least k < 0.4hMpc™* at all redshifts.

< When isolated, the beat coupling e [edt from [21, 22], can indeed be described by the last term in Eq. (22), as
shown by the blue points and curves of Figs 1-4.

< In a more realistic approach, the local average e [ect needs to be taken into account as well. This has previously
been overlooked in analytic studies and we derive its e [edt using perturbation theory, leading to Eq. (23). It
reduces the covariance, leaving only 10% of the original beat coupling excess covariance, as shown by the green
lines and points in Figs 1-4. This also explains the disagreement found between the beat coupling-only expression
and simulations in [25]. We conclude that the beat coupling excess covariance is not as important as previously
thought.

« Eq. (48) gives the final result for the matter covariance matrix for arbitrary survey geometry, including not only
the above mentioned e [edts, but also the correlations between neighboring power spectrum bins and the related
reduced variance due to the survey’s window function. It is depicted in Figs 6-9 and again agrees well with
simulations. It can be used as a first step towards a covariance matrix for the galaxy (or other tracer’s) power
spectrum.

In a real survey of large scale structure, the e [edts discussed in this paper are relevant because there are always modes
larger than the survey volume. Our results are thus important for large scale structure surveys and in particular galaxy
surveys, as we quantify the expected excess covariance due to these modes, as well as the more standard covariance
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contributions. With a complete description of the covariance matrix now available, it is also possible to study the
cosmology dependence of the covariance matrix in an e Lcieht manner. We refer to the Appendix for a first look into
this issue.

To build a complete covariance matrix for the galaxy power spectrum, one needs to include the eledts of shot
noise, galaxy bias and redshift space distortions. While the e [edt of shot noise is easy to incorporate within the FKP
formalism (at least in the limit where the shot noise can be treated as Gaussian), the other e [edts are more complicated
and clearly beyond the scope of our paper. However, a very rough first approximation to a galaxy covariance matrix
could be obtained by multiplying the dark matter matrix by the galaxy bias to the fourth power, including an angle
averaged Kaiser factor (as in [25]) to account for redshift space distortions, and using FKP to include the e [edt of
shot noise.

In addition to the complications arising from observing galaxies (or other tracers) instead of dark matter, one also
needs to be able to describe the covariance for a realistic survey geometry (not many surveys have a cubic footprint).
For this reason, we presented in section V a full description of the model for arbitrary survey geometry, assuming
the FKP estimator is used. By comparing to simulations, we showed that the expressions from [7] (with trispectrum
terms added) can be used to accurately describe the mode mixing due to the survey window function and the resulting
correlations between neighboring power spectrum bins. While section V does not present any completely new results
relative to the previous sections and what is in the literature, its main purpose is to present a complete set of equations
to describe the matter power spectrum for arbitrary survey geometry. This can then serve as a stepping stone towards
a full galaxy covariance matrix.
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Appendix A: Cosmology Dependence of Covariance Matrix

One major advantage of the analytic expressions presented in this work, is that they allow for a quick estimate of
the covariance matrix, especially compared to methods using N-body simulations. The ease with which covariance
matrices can be calculated makes the analytic method perfectly suited for studying the cosmology dependence of
the covariance matrix. A full study of this cosmology dependence would consider how constraints on cosmological
parameters are aledted and would quantify the error induced by ignoring the cosmology dependence. Such an
investigation is beyond the scope of this article and we will leave it for future work. In this appendix, we will simply
quantify how much the covariance matrix changes as we vary individual cosmological parameters.

For simplicity, we again consider the covariance in the matter power spectrum, as estimated from a cubic volume
with V = L% = (600h~*Mpc)3. We imagine the spectrum is “measured” at redshift z = 0.5 and include the smearing
e [edt due to the window function that arises when the FKP estimator is used. In other words, we will consider the
covariance matrix given by Eq. (48), with the power spectrum evaluated at z = 0.5.

In practice, galaxy surveys typically measure the power spectrum relative to a fixed, fiducial background cosmology,
see e.g. [35]. Therefore, when a Monte Carlo chain is run, the theoretical power spectrum at each point in parameter
space needs to be rescaled to account for the eledt of using the fiducial background cosmology as opposed to the
actual background cosmology at that point in parameter space. Only after this rescaling can it be compared to the
observed spectrum. For consistency, we therefore also rescale the covariance to the fiducial background cosmology,

Cr(Dki, Aky) = A8 C(AK/A, DK /Ay =y, A, (A1)

where Cg is the covariance matrix of the power spectrum estimator relative to the fiducial background cosmology, C
the true covariance matrix given by Eq. (48) (evaluated at the actual volume V = V¢ A3, with V¢ the survey volume
calculated in the fiducial cosmology), Ak; the bin widths, and A = dy (z)/d\f, (2) the dilation factor (see [35]).

Since the di Lerent terms in the covariance matrix scale either like the second or third power of the power spectrum,
we expect a significant dependence on og and other parameters changing the overall normalization of the spectrum.
The beat coupling/local average term is particularly sensitive to the power at k $T27§/L so that it should depend on
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FIG. 10: Left Panel: Variance relative to linear, mode counting based variance as a function of cosmology. The black curve
shows the fiducial cosmology, and the other curves depict the e [edt of varying each ACDM parameter by approximately twice
its error bar expected from a large scale structure plus CMB measurement (see text, and Table I). Right Panel: The signal-
to-noise squared in the detection/amplitude of the power spectrum as a function of the largest included mode k (main figure).
The bottom inset shows the relative dilerknce with the fiducial cosmology. Both panels show that the strongest parameter
dependence is on og and Q,,,.

any parameter that a[edts the power on very large scales. To make this more quantitative, we consider the ACDM
fiducial cosmology described in section Il and change each parameter p by a step Ap, one by one, keeping the
remaining parameters fixed. For the step sizes, we choose Ap = 2 0, where g, is the parameter uncertainty from [6]
(Table 3), obtained from combining the SDSS-11 Data Release 7 [36] halo power spectrum with WMAPS5 [37] cosmic
microwave background (CMB) data. These step sizes are indicative of the relevant parameter range in a Markov
Chain Monte Carlo (MCMC) analysis with power spectrum data. We show the fiducial parameters and their step
sizes in Table I.

| Wp Wi an Og Ns
fiducial | 0.023 0.1323 0.27 0.79 0.96
step size|0.00116 0.008 0.038 0.05 0.026

TABLE I: Fiducial values and step sizes used to test cosmology dependence of matter covariance matrix.

In the left panel of figure 10, we show the eledt on the variance of each parameter. As before, we normalize
the variance by the variance based on mode counting and the linear power spectrum (as calculated in the fiducial
cosmology). The units on the horizontal axis are [hg/Mpc], where hg = 0.7 is the dimensionless Hubble parameter in
the fiducial model. The variance in the fiducial model is given by the black curve. As expected, the largest variation
is obtained when varying ag, causing a significant increase in variance. The e[edt of the other parameters is much
smaller.

The eledt of the parameter variations on the correlation coe [ciehts is always below |Apij| T605, with wm
decreasing the coe [ciehts most, and og increasing them by the largest amount. Finally, to incorporate the properties
of the full covariance matrix in a single statistic, we calculate the squared signal-to-noise ratio in the (non-linear)
power spectrum amplitude as a function of kmax, see Eq. (26). In a more thorough analysis, one could replace the
power spectrum in the expression for (S/N)? by derivatives with respect to cosmological parameters in order to create
a full Fisher matrix.

The right panel of figure 10 depicts this signal-to-noise squared as a function of kmax for the dilerknt cosmologies,
with the bottom inset showing the relative di [erknce with respect to (S/N)? in the fiducial model. We focus on the
range k = 0— 0.2 hg/Mpc, as this is a more realistic range for a galaxy survey (due to strong non-linearities and shot
noise on smaller scales), and because we have seen that our approach loses accuracy on smaller scales. Consistent with
the picture arising from the left panel, we see again that og has by far the largest e [edt, decreasing the signal-to-noise
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by [30% (with only a weak dependence of the relative change on kmax). The other parameters have a much more
modest e [edt (T1§% for kmax [COLh/Mpc). We conclude that reasonable variations in cosmic parameters can cause
[30% changes in the covariance matrix and thus in Ax? values in an MCMC chain.

Finally, we note that, for a galaxy survey, the e [edt of galaxy bias on the covariance matrix will be very important
as well, and will look similar to the e [edt of og discussed above.
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