The functional roles of 3D heterostyly and floral visitors in the reproductive biology of *Turnera subulata* (Turneroideae: Passifloraceae)

Marina Teixeira Achkara, André Rodrigo Rechb, Leonardo Ré Jorgec, W. Scott Armbrusterd, Odair José Garcia de Almeidaa,*

aPlant morphology lab, Biosciences Institute, Coastal campus, São Paulo State University – UNESP;

bUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM) – Licenciatura em Educação do Campo.

cDepartamento de Biologia Animal, Universidade Estadual de Campinas (UNICAMP)

dSchool of Biological Sciences, University of Portsmouth, Portsmouth, UK

*Corresponding author: Odair José Garcia de Almeida

E-mail address: odair.almeida@unesp.br
Abstract

Heterostyly is a floral polymorphism that reduces conflicts between sexual functions (sexual interference), such as self-pollination in self-incompatible flowers and loss of pollen to incompatible stigmas. In many distylos pollination systems, there is remarkable structural fit between the sexual organs of flowers and the parts of the pollinator body parts where compatible pollen is deposited. Nevertheless, inter-morph pollen transfer is often asymmetrical, with short-styled flowers (S-morph) receiving less compatible pollen than long-styled flowers (L-morph). One way to reduce the problem of sexual interference in short-styled flowers is to place stigmas outside of the flower centre, as seen in three-dimensionally (3D) heterostylos flowers. Heterostyly in Turnera has been extensively studied; however, 3D heterostyly has not been previously reported in this genus. The aims of this study were: 1) to elucidate the pollination system of T. subulata; and 2) to assess whether 3D heterostyly promotes disassortative pollination and reduces self-pollination in short-styled flowers in this taxon. The study population of Turnera subulata exhibited an isoplethic (1:1) ratio, with two well-defined morphs, and a high floral accuracy index for both morphs. Results from an experiment in which we manipulated the 3D orientation of the style showed that compatible crosses were favoured by the 3D flower morphology, consistent with a high floral accuracy. Our results also demonstrate the functional importance of 3D heterostyly in reducing intramorph pollination, as it increases the amount of cross pollen reaching the S-morph flowers. Our results provide the first observation of the presence of 3D heterostyly in this well-studied species and demonstrate the importance of this kind of morphological specialization ensuring efficiency in an ecologically generalized pollination system.
Key-words: Floral accuracy, L-morph flower, S-morph flower, Disassortative pollination, Generalized pollination system
1. Introduction

The reciprocal correspondence of anther and stigma positions in the vertical dimension (heterostyly) was the phenomenon that perhaps most amazed Darwin in his studies of floral morphology and pollination (Darwin, 1905, p. 74). He discussed the evolution and function of heterostyly in great detail and established that only inter-morph pollinations produced viable seeds (Cohen, 2010; Darwin, 1877). Since then, heterostyly has been shown to reduce sexual interference and self-pollination, and promote disassortative (inter-morph) mating (Barrett et al., 2000; Barrett and Shore, 2008). Indeed, reciprocal differences in the position of reproductive organs between morphs makes inter-morph cross-pollen deposition more likely than intra-morph deposition, at least in some systems (Barrett et al., 2000; Keller et al., 2014; Wu et al., 2018). Nevertheless, breakdown of intra-morph compatibility, has also been shown, especially in self-compatible monomorphic populations colonizing new areas (Barrett 2002; Castro et al., 2013).

In many distylos pollination systems, there is remarkable structural fit between the stigmas of each morph and the part of the pollinator body where compatible (disassortative) pollen is deposited (Costa et al., 2017). However, inter-morph pollen transfer may not always be “on target”, with short-styled flowers (S-morph) receiving fewer compatible pollen grains than long-styled flowers (L-morph), the occurrence of which is sometimes related to pollinator behaviour (Keller et al., 2014). Another deviation from perfect disassortative pollen transfer happens when the deposition of self-pollen precedes, and therefore limits or prevents, cross-pollination. In *Lythrum salicaria* the S-morph had more interference from self-pollination than the other floral morphs, compromising seed set of this floral morph (Waites and Ågren, 2006).
One peculiar variation of the classical distylous systems, happens when gynoecia
and androecia vary not only in height but also occur in reciprocal positions laterally
creating a three dimensional variation. Previously described 3D heterostyly involve
short-styled flowers with stigmas projected through the basal portion of the stamens,
and therefore projecting away from the centre, functionally creating a second whorl
(Armbruster et al., 2006). One expected advantage of the 3D heterostylyous flowers is an
increased rate of compatible pollen receipt and a reduction in self-pollination, because
stigmas are no longer positioned right below the anthers (Armbruster et al., 2006). Even
though 3D heterostyly has been described (see also Turketti et al., 2012), to the best of
our knowledge there is no experimental evidence testing the hypothesis that the 3D
morphological inversion of the position of fertile organs increases the receipt of
compatible pollen or reduces the adherence of self-pollen to the stigmatic surfaces of
short-styled flowers.

Three-dimensional heterostyly was first described in *Linum suffruticosum* L., a
species that has positional reciprocity between L-morph and S-morph flowers in three
dimensions (Armbruster et al., 2006). The inter-morph reciprocity is achieved with both
anthers of long stamens (S-morph) and stigmas of long styles (L-morph) contacting the
dorsal region of the bodies of nectar-seeking pollinators, while the anthers of short
stamens (L-morph) and the stigmas of short styles (S-morph) contact their ventral
surface. Therefore, the three dimensional position of stigmas should insure pollen
deposition with the same or at least similar efficiency for both morphs of *L.
suffruticosum*. However, Armbruster et al. (2006) did not present experimental evidence
that 3D heterostyly effectively increases disassortative mating in *L. suffruticosum*.
Turketti et al. (2012) reported a complex case of three-dimensional reciprocity in
tristylos populations of *Oxalis* L. section *Sagittatae* in South Africa. This species is
self-compatible, making the system more reliant on reciprocity, and requiring consistent
and precise floral visitation by pollinators, to achieve out-crossing. No data on
pollination efficiency were presented, however.

Heterostyly in *Turnera* L. has been extensively studied (Baker and Shore, 1995;
Barrett, 1978, 1990; Barrett and Shore, 1987; Belaoussoff and Shore, 1995; Bentley,
1979; Medeiros and Schlindwein, 2003; Schlindwein and Medeiros, 2006; Shore, 1991;
Shore and Barrett, 1984, 1985, 1987; Swamy and Bahadur, 1984). However, 3D
heterostyly has not been reported previously in this genus. Baker and Shore (1995)
studied the pollination of *T. ulmifolia* L. and suggested pollination success was due to
adaptation to a diverse range of pollinators, i.e. due to it being an ecological generalist
in terms of pollination (Ollerton et al., 2007). The flowers of this species were reported
to attract a diverse group of insects that feed on pollen and/or nectar (Barrett, 1978). In
this study we focus on *Turnera subulata* Sm. [syn = *T. ulmifolia* var. *elegans* (Otto ex
Nees) Urb.]. Although this species also has an open floral morphology and wide
diversity of floral visitors (Barrett 1978, ARR unpublished observations), consistent
with it having an ecologically generalized pollination system, preliminary observations
suggested that the flowers were phenotypically specialized (sensu Ollerton et al., 2007),
exhibited 3D heterostyly,. We therefore addressed the following questions: 1) How
does the pollination system of *T. subulata* work? 2) How accurate are the 3D flowers of
T. subulata (cf. Armbruster et al., 2009, 2017)?; and, 3) Is 3D heterostyly able to
promote disassortative (compatible) pollination and, in the short-styled flowers of *T.
subulata, to reduce self-pollen deposition?

2. Materials and Methods

2.1. Study Species
Turnera subulata was chosen as an experimental species for this study because of its unusual floral morphology with presumed 3D heterostyly. It is a rhizomatous shrub with heterostyloous flowers whose corolla is made of yellow petals with lighter apices and a purplish spot at the base; the androecium is composed of flattened-subulate stamens with yellow filaments, which are tightly merged to form a staminal tube; the anthers are orange with basi-dorsal filament insertion, bearing yellow pollen. The gynoecium comprises an ovoid or conical tricarpellar, trichomatous ovary, three yellow styles (measuring 6.5 - 9 mm in L-morph, and 3-5 mm in S-morph), and yellow stigmas. The fruits are subglobose, and the seeds are claviform with unilateral aryls (Arbo, 2005; Woodson-Jr. et al, 1967). The flowers of T. subulata have three separate styles, each with a three-branched stigma oriented in a dimension perpendicular to the floral axis in the S-morph flowers. The species is ruderal, occurring in clearings in woods and disturbed areas, including roadsides and urban centres.

2.2. Study Population

Experiments and observations were performed with a population of more than 300 individuals of T subulata in the city of Campinas, at the Ecological Park “Prof. Hermógenes de Freitas Leitão Filho” (22º48’44” / 47º04’26”), in an area of semi-natural vegetation (135,000 m²). The study population flowers year round, but with a flowering peak from July to February. In December 2015, July 2016, and January 2017 we collected data for three weeks, with daily observations from pre-anthesis to the end of insect visitation or until flowers closed. For comparison of flower visitors and results of incompatibility tests, we used data collected in January 2015 from a population in the city of Presidente Figueiredo, Amazonas (02º73’17” / 60º01’29”).
2.3. Isoplethy and Morphometric Analysis

Members of both plant morphs were counted in the population to determine if the population was isoplethic (equal morph frequencies). The nature of floral heterostyly was evaluated morphometrically by measuring 40 flowers of each morph, from which two petals had been removed so that the reproductive organs could be photographed from a fixed distance. To avoid damage or change in functional distances, measurements of stamens (height) and style (length) were taken from photographs using a caliper-ruler as a scale to maintain floral functional dimensions. Afterwards, measurements were recorded using the Image J software, and from these parameters the floral reciprocal accuracy was calculated using the following formulas (Armbruster et al., 2009; see also Armbruster et al. 2017):

Tall Organ Inaccuracy

$$\text{TOI} = \left(\overline{LS} - \overline{SP} \right)^2 + V_{LS} + V_{SP}$$

Short Organs inaccuracy

$$\text{SOI} = \left(\overline{SS} - \overline{LP} \right)^2 + V_{SS} + V_{LP}$$

Where LS means Mean Anther Height of L-morph; SP means Mean Stigma Height of S-morph; SS means Mean Anther Height of S-morph; and LP means Mean Stigma Height of L-morph. The V’s represent the respective variances.

To compare the inaccuracy values proportionally to the organ size, the final values were scaled according to the following formula:

Mean-Squared-Scaled Inaccuracy of Tall Organs

$$\text{MSTOI} = \left(\text{TOI} * 100 / \left((\overline{LS} + \overline{LP})/2 \right)^2 \right) * 100$$
Mean-Squared Inaccuracy of Short Organs

\[\text{MSSOI} = \frac{\text{SOI} \times 100}{((\text{SS} + \text{SP})/2)^2} \times 100 \]

2.4. Frequencies and Efficiencies of Floral Visitors

In order to measure the efficiency of each floral visitor as a potential pollinator, we used tests of single-visit pollen deposition onto stigmas of virgin flowers, based on Freitas (2013). To ensure all flowers analyzed were virgin, floral buds were bagged, preventing visitor interference. Flowers were individually uncovered, and one of the three stigmas was immediately collected as an unvisited control group. The flower was then observed until it received its first visit; immediately after the visit, another stigma was collected and stored separately for pollen quantification. We counted pollen under a light microscope, using slides coated with a medium made of gelatin-glycerin and basic fuchsin to enhance contrast of the pollen grain relative to stigma tissue (Beattie, 1971).

To determine visitation frequency, we observed flowers for periods of 10 minutes per morph per day, for a total of 80 minutes for each morph (S-morph and L-morph). Visitors were considered pollinators when the difference between the number of pollen grains on the visited stigma and the virgin stigma was greater than zero (King et al., 2013). To ensure that we correctly inferred the morph of the pollen-donor plant we considered differences in pollen size. We tested and confirmed that pollen grains of the L- and S-morphs differ in size (Mean L: 54.43 versus Mean S: 74.04; t: -8.9873; p < 0.0001 - see also Fig. 03 from Schlindwein and Medeiros 2006). Because Barrett (1978) recorded that there may be some overlap in pollen size from S- and L-morph flowers, we ignored pollen grains between 60 and 70 µm in size. Figure S.1 (in the supplementary material), shows the range of sizes of pollen from S- and L-morph flowers of our experimental species.
2.5. Incompatibility Tests

We determined the fruit-production rates for each possible cross within the population: inter-morph (L-morph vs. S-morph), intra-morph (L-morph vs L-morph; and S-morph vs. S-morph), and self-pollination. In total, we bagged 120 floral buds from 76 L-morph and 77 S-morph plants. After anthesis started we made all crosses manually, making sure stigmas were well covered with pollen. Pollen used for crosses was a mixture from at least five different anthers (one per flower) from five different individuals of the same morphs. We performed 40 inter-morph crosses (20 with S-morph pollen deposited on L-morph stigmas and 20 with L-morph pollen deposited on S-morph stigmas); 40 intra-morph crossings (20 with L-morph pollen deposited on L-morph stigmas and 20 with S-morph pollen deposited on S-morph stigmas); and 40 self-pollinations (20 S-morph and 20 L-morph flowers). Flowers were marked and identified according to the crossing they were subjected to and then re-bagged until the end of anthesis. After seven days, we evaluated the fruit set.

Along with incompatibility tests involving fruit production, we measured pollen-tube growth after inter-morph, intra-morph, and self-pollinations. In order to check for pollen-tube growth we run the same set of pollination tests using ten flowers in each treatment. After the pollination test flowers were kept bagged for at least 12 hours. We then collected carpels, fixed them in 50% FAA (Johansen, 1940), and observed the extent of pollen-tube growth under a fluorescence microscope in the lab. For the pollen-tube growth analysis, we stained the stigmas/styles with aniline-blue solution, as suggested by Martin (1959), allowing the pollen grain and pollen tubes to fluorescence under illumination with a Blue Glass (BG) filter.
2.6. Three-Dimensional (3D) Heterostyly Experiment

Thirty S-morph floral buds in upright positions were bagged until anthesis. When virgin flowers were uncovered, we collected one of the stigmas and prepared it on a slide as the control for pollen counts (hereafter called virgin). We manipulated a second stigma (“experimental stigma”) to move its position to the centre of the flower (simulating standard unidimensional reciprocity, with the gynoecium in the centre), while the third stigma (called “natural”) was kept in the original/natural position (3D) (Fig. 1). In order to move one stigma to the flower centre (inside stamens ring) we used forceps to gently press the style in between the filaments (Fig. 1 B). Since filaments are positioned very close to each other at the base of the flower, the manipulated style remained in the manipulated position by itself during the course of the experiment.

Flowers of *T. subulata* lasts for a single day, therefore after the visitation period when flowers started to close, we collected the remaining two stigmas (the manipulated and the unmanipulated 3D one) for pollen counts. Slides were prepared and pollen was counted using the same method described in the previous section

2.7. Data Analysis

We used linear mixed models to evaluate the effect of pollen source (intra- vs. inter-morph pollen transfer) on pollen deposition rates. To include the blocked design of the experiments, in which stigmas from the same flower were used for different treatments, individual flower was treated as a random variable in all models. Starting with a null model using only the random factor and an intercept, we compared models with different sets of fixed effects to test for a treatment effect (virgin flower vs. visited flower; included in all models except the null), such as morph of the pollen donor, morph of the pollen recipient, and the taxonomic group of the floral visitor. To compare
the models and to identify which best explains pollen deposition on stigmas, we used
the Akaike information criterion (AIC - Akaike, 1974; Burnham and Anderson, 2002),
treating models with AIC differences (delta-AICs) less than 2 as equally well-supported
(Burnham and Anderson, 2002).

We used linear and generalized mixed models to test if there were differences in
the total number and proportion of pollen grains from L-morph flowers deposited on the
stigma surface in S-morph flowers subjected to different treatments. The response
variables were 1) the total number of pollen grains from L-morph flowers deposited on
the stigma (legitimate pollen) and 2) the proportion of legitimate pollen relative to the
total. Total number was modelled as a linear variable with gaussian error distribution,
while the proportion as a logistic variable with a binomial error distribution. Predictor
variables were single fixed factors representing the three treatments used: virgin stigma,
3D stigma and manipulated stigma (positioned centrally). We used individual flower as
a random factor to account for the blocked design of our experiment. We again used the
AIC (Akaike, 1974; Burnham and Anderson, 2002) to determine whether this model fit
the data better than a null model with only the random factor. Subsequently, we used
multiple comparisons through one-way ANOVA, followed by a Tukey test to verify
whether the differences were significant between every pair of treatments. The analyses
were conducted in the R environment (R Development Core Team, 2006), using the
lme4 package for mixed models (Bates et al., 2015). TGgraphics were produced from
data analysis with R software (R Development Core Team, 2006) and GraphPad Prism
7.00, GraphPad Software, La Jolla California USA (www.graphpad.com).

3. Results

3.1. Isoplety and Morphometric Analysis
The sample population of *Turnera subulata* in Campinas comprised 76 L-morph and 77 S-morph plants and was considered isoplethic (1:1 ratio). The morphometric characterization of heterostyly exhibited two well-defined morphotypes (*p* = 2.5024E-48; Fig. 3). The inaccuracy of reciprocal organs was 0.04 for tall organs, and 0.05 for short organs, indicating a relatively high level of reciprocal accuracy in both. Short organs were more accurate when not scaled by mean-squaring, but tall organs were proportionately more accurate (MSTOI 4.03% versus MSSOI 2.28%).

3.2. Frequencies and Efficiencies of Floral Visitors

Flowers were visited most frequently by the non-native bee species *Apis mellifera*, followed by the native bees *Trigona* spp. in both locations where pollinator frequencies were recorded. In Campinas, we recorded bees and, very infrequently, a bee fly species (Phthiriinae) visiting the flowers (Fig. 2), while in Presidente Figueiredo (Amazonas), Hesperidae butterflies were also recorded as visitors of the flowers. Bees mostly visited a single flower per individual and collected nectar, although pollen collection was also common. Bees frequently landed onto the stigma as they approaching the L-morph flowers. To collect nectar, bees needed to crawl down towards the flower base touching reproductive organs on the way. There was no difference in the position (dorsal/ventral) of the pollen deposition onto the bee body. S-morph flowers deposited pollen predominantly on the visitor abdomen while L-morph pollen were concentrated on the bee head. Butterflies always collected nectar and mostly touched only the tall organs.

Experiments evaluating the efficiency of floral visitors showed that the model with donor morph only, and the model with the donor morph associated with the pollen
receiver morph were the most highly ranked and equally likely (Table 1, dAICc 0.2). Since the donor-morph model is the simpler model, it was considered the more appropriate to explain what influenced pollen deposition. Adding pollinators to the model, either as an additive factor or as an interaction factor, did not improve the explanatory power, suggesting that different pollinator species did not substantially influence the amount of pollen transferred. S-morph flowers received more self-pollen on their stigmas and more total pollen after a single visit than L-morph flowers (Fig. 4). Additionally, pollen from S-morph flowers was more frequently found on the stigma surfaces of both S and L-morph flowers (Fig. 4).

3.3. Incompatibility Tests

The cross pollination between different morphs (L-morph vs. S-morph) showed high rates of fruit production (94.50%), the cross pollination within the same morphs, but different flowers, (L-morph vs. L-morph and S-morph vs. S-morphs) did not set fruit. Curiously the self-pollinated flowers had a non-zero (but very low – 22%) rate of fruit production.

3.4. Three-Dimensional (3D) Heterostyly Experiment

The experiment involving stigma repositioning in the S-morph flowers (Fig. 5) revealed an effect of the three treatment classes (virgin, natural and experiment). The natural (control) treatment (original 3D arrangement) received the most pollen grains (P<0.0001). Additionally, the stigmas in 3D arrangement (natural in S-morph) received more pollen grains from L-morph flowers, both in absolute terms and as a proportion relative to S-morph pollen, compared to the manipulated stigmas (with the 3D arrangement removed, Fig. 6).
4. Discussion

This study reports the third plant family with a case of 3D heterostyly in nature and for the first time an important functional role of this mechanism in improving disassortative mating (compatible pollination) and reducing self-pollination in S-morph flowers of the isoplethic populations of *Turnera subulata*. The almost three-fold increase in total number of compatible pollen grains deposited in the 3D arrangement compared to the experimental flowers (116.4 vs. 43.5) is a good index of the gain in reproductive fitness by this type of heterostyly.

Both tall and short organs presented a high level of reciprocal accuracy, and two well-defined morphs exist (also recorded by Barrett, 1978 and Schlindwein and Medeiros, 2006). The tall organs are proportionally more accurate (i.e. lower inaccuracy in the L-morph stigma relative to the reciprocal (s-morph) anthers, and vice versa), which is a common phenomenon (Armbruster et al. 2009). High reciprocal accuracy is consistent with the results from the 3D cancellation experiment, which shows that compatible crossings (disassortative) were favoured by natural 3D flower morphology.

High floral accuracy is not a rule for heterostyly, and some genera such as *Pulmonaria* show extensive variation (up to 20%) in the scaled Inaccuracy Index (Jacquemyn et al. 2018). In fact, the existence of intra-morph pollination in non-3D-heterostylyous species has raised recurrent questions about the functional and evolutionary significance of heterostyly (discussed in Wu et al. 2018).

Although 3D heterostylyous flowers may be considered to be phenotypically specialized, due to the elaborate system of reciprocal herkogamy, they also show features which indicate ecologically generalised pollination (Ollerton et al., 2007).

Generalized pollination was indicated by the fact that several kinds of floral visitors
deposited similar amounts of pollen grains after a single visit. Although the population at Campinas was visited almost entirely by bees, these bees had diverse morphologies and behaviours, arguably belonging to several functional groups (Fenster et al., 2004). In other 3D heterostylous species, *Linum suffruticosum*, pollen was consistently deposited onto either the ventral or dorsal regions of visitors’ bodies, therefore flower phenotypic specialization resulted in a specialized use of pollinator body and behaviour (Armbruster et al. 2006). Instead, *T. subulata* seems to rather resemble species of *Oxalis* section *Sagittatae*, where the 3D phenotypic specialization resulted in a more evenly distribution of pollen on the animal’s body, taking advantage of a larger set of animal sizes and behaviour for pollination (Turketti et al. 2012).

In line with a relatively generalist pollination system, butterflies of the Hesperiidae family were recorded visiting flowers in the pilot study conducted in Presidente Figueiredo (Amazonas). Furthermore, Barrett (1978) reported butterflies visiting five varieties of *T. ulmifolia* [including *T. ulmifolia* var. *elegans*, synonym of *T. subulata*] in Central America (Costa Rica, Nicaragua, Panamá) and South America (Venezuela and Northern Brazil - Amazon region). Schlindwein and Medeiros, (2006) also recorded visits by three species of Hesperiidae, besides one beetle and over 20 species of Hymenoptera (mostly bees) in a semi-natural vegetation of “Tabuleiro Nordestino” in João Pessoa city (Northeastern Brazil). Therefore, it seems possible that lepidopterans may also be effective pollinators, despite their absence in the Campinas population. More research is required to fully understand the reproductive biology of *T. subulata*, for instance in relation to the report by Medeiros and Schlindwein (2003) of an intimate relationship between *T. subulata* and the oligolectic bee species *Protomeliturga turnerae*, which appears both to mate in the flowers and to collect its pollen.
The well recorded asymmetry in pollen transfer of heterostyous flowers was corroborated in our study, with S-morph flowers exporting more pollen (see Keller et al., 2014; Piper and Charlesworth, 1986; Schlindwein and Medeiros, 2006; Waites and Ågren, 2006). The number of pollen grains of S-morph origin deposited on the stigmatic surfaces was higher in both S-morph and L-morph flowers. This pattern makes sense because S-morph flowers have longer and more exposed anthers, thus pollen is more accessible to visitors, and pollen export is therefore likely more efficient (Piper and Charlesworth, 1986). Our results are consistent with those of Swamy and Bahadur (1984), who also recorded S-morph flowers as more efficient pollen donors in the reproductive system of T. subulata.

Since we could differentiate morph origin by their pollen grain size, we were able to evaluate whether the 3D arrangement enhances disassortative pollen deposition. Indeed, we observed that legitimate pollen flow between morphs was favored by 3D arrangement, as expected for distyous populations (Barrett et al., 2000; Sánchez et al., 2013). Our experiment also revealed that stigmas with a 3D arrangement (S-morph) received significantly higher amounts of pollen grains, and proportionally higher amounts of compatible L-morph morph pollen grains when compared to stigmas with a cancelled 3D arrangement. Therefore, the 3D arrangement increases the amount of legitimate pollen grains received in relation to illegitimate pollen grains (disassortative mating). Thus, 3D heterostyly in T. subulata may have evolved for the promotion of legitimate pollen receipt on S-morph stigmas, a matter for future comparative studies separating, for example, intrafloral and intramorph pollen deposition.

5. Conclusions
The export of pollen grains from S-morph flowers was significantly higher than export from L-morph flowers, and the 3D arrangement of stigmas in S-morph flowers increased the proportion of legitimate pollen-grains deposited. In addition, we conclude that the identity of floral visitor species was not a significant factor in explaining differences in pollen deposition. Furthermore, experiments revealed that 3D heterostyly improves pollination by reducing reproductive interference from illegitimate crossings and self-pollination, even in a pollination system that can be considered ecologically generalized.

Author Contributions

MTA and ARR conceived the ideas and designed methodology; MTA collected the data; MTA, WSA, LRJ, and OJGA analyzed the data; MTA, LRJ, WSA, ARR, and OJGA wrote the manuscript.

Competing interests

The authors declare no competing financial interests

Acknowledgements

We are extremely thankful for the Lab of Biosystematics and Pollination at the University of Campinas (UNICAMP) for laboratory facilities support. We also thank the “Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP” for the scholarship for MTA (Process 2015/26134-9).

References

https://doi.org/10.1007/978-3-540-68486-2_1

https://doi.org/10.2307/2409143

Bates, D., Maechler, M., Bolker, B., Walker, S., 2015. Fitting Linear Mixed-Effects

Entomol. 47, 82. https://doi.org/10.1017/S0003598X00016689

Belaoussoff, S., Shore, J.S., 1995. Floral correlates and fitness consequences of mating-
https://doi.org/10.2307/2410278

Practical Information-Theoretic Approach, 2nd ed. Springer New York, New York,
NY. https://doi.org/10.1007/b97636

2013. Reproductive strategy of the invasive Oxalis pes-caprae: Distribution
patterns of floral morphs, ploidy levels and sexual reproduction. Biol. Invasions

Cohen, J.I., 2010. “A case to which no parallel exists”: The influence of Darwin’s
https://doi.org/10.3732/ajb.0900395

Darwin’s cross-promotion hypothesis in tristylos purple loosestrife (Lythrum

https://doi.org/10.1139/b84-175

https://doi.org/10.1016/j.sajb.2011.06.014

https://doi.org/10.3732/ajb.93.1.142

23
Table 1. Model selection evaluating the factors explaining pollen deposition in *T. subulata*. dAIC represents the delta AICs (difference between Akaike information criteria; Akaike, 1974) for sequential models. df represents the degrees of freedom for each model. “Donor” refers to donor morph, and “receiver” refers to recipient morph.

<table>
<thead>
<tr>
<th>Model</th>
<th>dAIC</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollen donor</td>
<td>0.0</td>
<td>5</td>
</tr>
<tr>
<td>Pollen donor + receiver</td>
<td>0.2</td>
<td>6</td>
</tr>
<tr>
<td>Pollen Receiver + flower visitor</td>
<td>6.4</td>
<td>17</td>
</tr>
<tr>
<td>All factors added</td>
<td>5.2</td>
<td>12</td>
</tr>
<tr>
<td>Pollen donor + flower visitor</td>
<td>16.7</td>
<td>18</td>
</tr>
<tr>
<td>Pollen receiver</td>
<td>15.2</td>
<td>5</td>
</tr>
<tr>
<td>Flower visitor</td>
<td>22.3</td>
<td>10</td>
</tr>
<tr>
<td>Null</td>
<td>45.1</td>
<td>3</td>
</tr>
</tbody>
</table>
Figures

Fig. 1. Cancellation of the 3D conformation, moving one of the stigmas to the central position of the flower (among the stamens) of *Turnera subulata*. A. Natural 3D stigmas. B. One stigma in natural 3D position and another one moved to the central part of the flower (cancellation of the three-dimensionality of the stigma).
Fig. 2. Flowers visitors of *Turnera subulata* in the Campinas – São Paulo population.

Fig. 3. Distyly in *Turnera subulata*. Range of variation in the pistil and stamen heights, in a total of 80 flowers (40 S-Morpho, and 40 L-Morpho). For each flower the length of the style (from the ovary base to the tip of the stigma), and the length of the stamen (from the ovary base to the tip of the anthers) was measured.
Fig. 4. Pollen-deposition on stigmas of *Turnera subulata* after a single visit by a pollinator, grouped according to the floral morph pollen donor and the floral morph pollen-receiver. The boxes represent median and 1st and 3rd quartiles, and the whiskers the extreme values up to 1.5 times the interquartile range. Values beyond this limit are represented as dots above whiskers.
Fig. 5. Total pollen-deposition on the S-morph stigmas of *T. subulata*. Treatments tested were as follows: Virgin refers to stigmas collected before any visit of pollinators; Natural refers to stigmas in its original arrangement; Experiment refers to manipulated stigmas for which the 3D position was cancelled. Natural and experimental stigmas were collected at the end of anthesis. The boxes represent median and 1st and 3rd quartiles, and the whiskers the extreme values up to 1.5 times the interquartile range. Values above this limit are represented as dots above whiskers (post-hoc comparisons, all $p < 0.001$).
Fig. 6. Proportion of pollen-grains received from L-morph flowers in relation to all the pollen-grains deposited on the stigma of the S-morph flowers during the 3D cancellation experiment. The boxes represent median and 1st and 3rd quartiles, and the whiskers the extreme values up to 1.5 times the interquartile range. Values above this limit are represented as dots above whiskers (post-hoc comparisons, all p < 0.001).
Fig. S1. Range of sizes of pollen grains from S- and L-morph flowers of *T. subulata*. A. Pollen grains from a L-morph flower. B. Pollen grains from a S-morph flower. Scale bars = 100 µm.