Some Notes on an Extended Query Language for FSM

Abdelkader Telmoudi\(^1\), and Salem Chakhar\(^2\)

\(^1\)Ecole Nationale d’Ingénieurs de Tunis, B.P. 37 Le Belvédère 1002 - Tunis, Tunisie.

\(^2\)LAMSADE, Université Paris Dauphine,
Place du Maréchal de Lattre de Tassigny, F-75775 Paris Cedex 16, France.

Some Notes on an Extended Query Language for FSM
Abdelkader Telmoudi\(^1\), and Salem Chakhar\(^2\)

\(^1\)Ecole Nationale d’Ingénieurs de Tunis, B.P. 37 Le Belvédère 1002 - Tunis, Tunisie.

\(^2\)LAMSADE, Université Paris Dauphine,
Place du Maréchal de Lattre de Tassigny, F-75775 Paris Cedex 16, France.

1 INTRODUCTION

There have been several tentatives to develop data models that support the fuzziness of real-world [1][4][9]. Most of these works consider that each entity in real-world belongs to one and only one class, which is very restrictive in many applications (e.g. cosmology, archaeology, spatial modelling). In database literature, we may enumerate some recent extensions of object-oriented data models to support the uncertainty of real-world at the class definition level [5][10][7] and only few extensions of semantic data models have been proposed [3][6]. In the same direction of research, the authors have proposed a new database model, namely Fuzzy Semantic Model (FSM) [2], that supports fuzzy class definition and authorises an entity to be a member of one or more classes with different degrees of membership. In this paper we briefly review basic concepts of FSM and then provide some notes on an extended query language adapted to it.

2 FUZZY SEMANTIC MODEL

2.1 Constructs of FSM

Constructs of FSM (see [2] for a full description of FSM) are extensions of the Unifying Semantic Model [8] that are enriched with new concepts enabling the database system to support fuzziness of real-world.

The space of entities \(E\) is the set of all entities of the domain of interest. A fuzzy entity \(e\) in \(E\) is a natural or artificial entity that we cannot assign to an exact class. In other words, a fuzzy entity verifies only (partially) some extent properties of one or some classes. Classic entities are particular case of fuzzy entities since they are assigned to exactly one class.

A fuzzy class \(K\) in \(E\) is a collection of fuzzy entities: \(K=\{(e,\mu_K(e)) : e\in E; \mu_K(e) > 0\}\). \(\mu_K\) is a characteristic or membership function and \(\mu_K(e)\) represents the degree of membership (or d.o.m) of fuzzy entity \(e\) in fuzzy class \(K\). Membership function \(\mu_K\) maps the elements of \(E\) to the range \([0,1]\), where 0 implies no-membership and 1 implies full membership. A value between 0 and 1 indicates the extent to which entity \(e\) can be considered as an element of fuzzy class \(K\).

FSM contains several types of basic fuzzy classes that are summed up in Table 1. The elements of a fuzzy class are called members. Each fuzzy class \(K\) may have any number of three types of members: (a) true-members (i.e. entities \(e\) with \(\mu_K(e)=1\)), (b) pseudo-members (i.e. entities \(e\) with \(0.17 \leq \mu_K(e) < 1\)), and (c) weak-members (i.e. entities \(e\) with \(0 < \mu_K(e) < 0.17\)).

FSM supports four different relationships: property,
decision-rule, membering and interaction. Property relationships relate fuzzy classes to domain classes. Each property relationship creates an attribute and each attribute has a unique datatype and may be single-valued, unknown, undefined, null or multi-valued. Decision rule relationships are implementation of the extents of fuzzy classes, i.e., the set of properties-based rules used to assign fuzzy entities to fuzzy classes (see 2.2). Membering relationships relate fuzzy entities to fuzzy classes through the definition of d.o.m. Interaction relationships relate members of one fuzzy class to other members of one or several fuzzy classes.

Table 1: FSM basic fuzzy classes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete fuzzy class</td>
<td>A fuzzy class that all its members have a d.o.m equal to 1</td>
</tr>
<tr>
<td>Non-complete fuzzy class</td>
<td>A fuzzy class that has at least one member with a d.o.m strictly less than 1</td>
</tr>
<tr>
<td>Strong fuzzy class</td>
<td>A fuzzy class whose members can exist on their own</td>
</tr>
<tr>
<td>Weak fuzzy class</td>
<td>A fuzzy class that the existence of its members depend on the existence of other classes</td>
</tr>
<tr>
<td>Compact fuzzy class</td>
<td>A complete and strong fuzzy class</td>
</tr>
<tr>
<td>Non-compact fuzzy class</td>
<td>A complete and weak fuzzy class</td>
</tr>
<tr>
<td>Fuzzy entity-class</td>
<td>A new entity that cannot be assigned to any pre-existing fuzzy class</td>
</tr>
<tr>
<td>Domain class</td>
<td>A space to which an attribute’s values are mapped</td>
</tr>
</tbody>
</table>

In FSM there are several complex fuzzy classes (see Table 2), that permit to implement the semantics of real-world among objects in terms of generalization, specialization, aggregation, grouping and composition relationships, which are commonly used in purely semantic modelling.

2.2 Entity/Class Membership Function in FSM

As it is underlined above, a fuzzy class is a collection of many fuzzy entities having some similar properties. Fuzziness is thus induced whenever an entity verifies only (partially) some of these properties. We denote by

\[p_K = \{ p_i^K; K \subseteq E; i \geq 1 \} \]

the set of these properties for a given fuzzy class \(K \). \(p_K \) is the extent of class \(K \). These properties may be derived from the attributes of the class and/or from common semantics. The extent to which each of these properties determines the class \(K \) is not the same. Indeed, there are some properties that are more discriminative than others. To ensure this, we associate to each property \(p_i^K \) a normalized weight \(w_i^K \) reflecting its importance in deciding whether or not an entity \(e \) is a member of a given class \(K \). To keep the coherence of our model, we impose that \(\Sigma w_i^K = 1 \).

On the other hand, an entity may verify fully or partially extent properties of a given fuzzy class. Let \(D_K \) be the basic domain of extent property \(p_i^K \) values and \(P_K \) is a subset of \(D_K \), which represents the set of possible values of property \(p_i^K \). The partial membership function of an extent property value is \(\mu_K^{p_i^K} \), which maps elements of \(D_K \) into \([0,1]\). For any attribute value \(v \in D_K \), \(\mu_K^{p_i^K}(v) = 0 \) means that fuzzy entity \(e \) violts property \(p_i^K \) and \(\mu_K^{p_i^K}(v) = 1 \) means that this entity verifies fully the property value. The number \(v \) is the value of the attribute of entity \(e \) on which the property \(p_i^K \) is defined. More generally, the value of \(\mu_K^{p_i^K}(v) \) represents the extent to which entity \(e \) verifies property \(p_i^K \) of fuzzy class \(K \). Accordingly, for any fuzzy entity \(e \), the global d.o.m \(\mu_K(e) \) for a fuzzy class \(K \) is equal to \(\Sigma_i w_i^K \cdot \mu_K^{p_i^K}(v) \).

Table 2: FSM complex fuzzy classes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction fuzzy class</td>
<td>A fuzzy class that describe the interaction of two or more fuzzy classes</td>
</tr>
<tr>
<td>Fuzzy superclass</td>
<td>A generalization of one or many, simple or complex, fuzzy classes</td>
</tr>
<tr>
<td>Fuzzy subclass</td>
<td>A specialization of one or many, simple or complex, fuzzy classes</td>
</tr>
<tr>
<td>Composite fuzzy class</td>
<td>A fuzzy class that has other fuzzy classes as members</td>
</tr>
<tr>
<td>Aggregate fuzzy class</td>
<td>A fuzzy class that its members are heterogeneous and exhaustive collection from several fuzzy classes</td>
</tr>
<tr>
<td>Grouping fuzzy class</td>
<td>A fuzzy class that its members are homogenous collection of members from the same fuzzy class</td>
</tr>
</tbody>
</table>

3 AN EXTENDED QUERY LANGUAGE

In this section we present some notes on an ongoing conceptual query language for accessing FSM-based databases and illustrate some examples of data retrieval operations. All examples of this section rely on the database schema illustrated in Figure 1. For the sake of clarity, only necessary classes and relationships are depicted in this figure.

In the example database, GALAXY is an aggregate fuzzy class whose members are unique collections of members from COMETS, STARS, and PLANETS grouping fuzzy classes. These last ones are homogenous collections of members from strong fuzzy classes COMET, STAR, and PLANET, respectively. NOVAE and SUPERNOVAE are two attribute-defined fuzzy subclasses of STAR basing on Type_of_Star attribute. SCIENTIST is a collection of astronomers and DISCOVEY is an interaction fuzzy class between SUPERNOVAE and SCIENTIST.

The general definitions of a fuzzy class and a fuzzy subclass in FSM are as follows (note that attributes’ definitions are partially inspired from [7]).
CLASS <class_name> WITH DOM OF <gdom>

SUPERCLASS:
 OF <class_name_1> WITH DOM <scdom_1>
 ...
 OF <class_name_k> WITH DOM <scdom_k>

EXTENT:
{<Ext_attr_1> | <Ext_sphrase_1> } WITH WEIGHT <w>
...
{<Ext_attr_n> | <Ext_sphrase_n> } WITH WEIGHT <w_n>

ATTRIBUTES:
Attr_1_name: [FUZZY] DOMAIN <domaine_1>: TYPE OF <type_1> WITH DOM OF <dom_1>: [REQUIRED][UNIQUE]
...
Attr_r_name: [FUZZY] DOMAIN <domaine_r>: TYPE OF <type_r> WITH DOM OF <dom_r>: [REQUIRED][UNIQUE]

CONTENTS:
[ENumerated composition FROM <class_list_1>]
[Selected composition ON attributes <attr_list_1> FROM <class_list_2>]
[Aggregation OF <class_list_3>]
[Grouping FROM <class_name_2>]

INTERACTION:
<iinter_name_1> WITH <c_name_1> INVERSE IS <i_inter_name_1>
...
<iinter_name_z> WITH <c_name_z> INVERSE IS <i_inter_name_z>

SUBCLASS <class_name> WITH DOM OF <scdom>

SPECIALIZATION:
 OF <class_name_1> WITH DOM <scdom_1>:
[BY ENUMERATION]
[ON attributes <attr_list_1>]
[ON semantics <sphrase_list_1>]
[BY INTERSECTION WITH <class_list_1>]
[BY DIFFERENCE WITH <class_name_1>]
OF <class_name_q> WITH DOM <scdom_q>:

EXTENT:
{<Ext_attr_1> |<Ext_sphrase_1> } WITH WEIGHT <w>
...
{<Ext_attr_1> |<Ext_sphrase_1> } WITH WEIGHT <w_1>

ATTRIBUTES:
Attr_1_name: [FUZZY] DOMAIN <domaine_1>: TYPE OF <type_1> WITH DOM OF <dom_1>: [REQUIRED][UNIQUE]
...
Attr_r_name: [FUZZY] DOMAIN <domaine_r>: TYPE OF <type_r> WITH DOM OF <dom_r>: [REQUIRED][UNIQUE]

INTERACTION:
<iinter_name_1> WITH <c_name_1> INVERSE IS <i_inter_name_1>
...
<iinter_name_z> WITH <c_name_z> INVERSE IS <i_inter_name_z>

Subclasses may have their own subclasses and if this is the case, they must have SUPERCLASS components.

As examples, fuzzy classes GALAXY, STAR and SUPERNOVAE in the example database may be implemented as follows:

CLASS galaxy WITH DOM OF gdom

EXTENT:
Location WITH WEIGHT 1.0

ATTRIBUTES:
Name: TYPE OF string WITH DOM 1.0: REQUIRED UNIQUE
Age: FUZZY DOMAIN [very young, young, old, very old]: TYPE OF integer WITH DOM 1.0: REQUIRED
Location: FUZZY DOMAIN [in, near, very near, distant, very distant]: TYPE OF real WITH DOM 1.0

CONTENTS:
AGgregation OF comets, stars, planets

CLASS star WITH DOM sdom

SUPERCLASS:
 OF supernovae WITH DOM sdom_sn
 OF novae WITH DOM sdom_n

EXTENT:
Luminosity WITH WEIGHT 0.7
Weight WITH WEIGHT 0.3

ATTRIBUTES:
S_Name: TYPE OF string WITH DOM 1.0: REQUIRED UNIQUE
Type_of_Star: TYPE OF symbolic (novae, supernovae) WITH DOM 1.0: REQUIRED
Age: FUZZY DOMAIN [very young, young, old, very old]: TYPE OF integer WITH DOM 1.0: REQUIRED
Location: FUZZY DOMAIN [in, near, very near, distant, very distant]: TYPE OF real WITH DOM 1.0: REQUIRED
Luminosity: FUZZY DOMAIN [0.0001L,100000L]: TYPE OF real WITH DOM OF 1.0
Weight: FUZZY DOMAIN [0.1W,100W]: TYPE OF real WITH DOM OF 1.0: REQUIRED

SUBCLASS supernovae WITH DOM sdom

EXTENT:
Luminosity WITH WEIGHT 0.3
Weight WITH WEIGHT 0.7

ATTRIBUTES:
SN_Name: TYPE OF string WITH DOM 1.0: REQUIRED UNIQUE
Type_of_SN: TYPE OF string WITH DOM 1.0: REQUIRED

SPECIALIZATION:
OF star WITH DOM sdom ON ATTRIBUTES Type_of_Star

INTERACTION:
discovers WITH scientist INVERSE IS discovers

The symbols L_s and W_s above are luminosity and weight of the sun, respectively; they are often used as measurement units. In the following, we provide some notes on an ongoing conceptual query language through some examples of data retrieve operations.

The syntax of a retrieve query in FSM is as follows:

[FROM (class_name WITH DOM [op] class_level,]
[member_type MEMBER OF class_name)]

[RETRIEVE {attribute_name [OF inter_name]}
[ORDER BY order_list]
[WHERE [selection_express] WITH DOM [op] attr_level]

The argument of the FROM statement is a list of classes’ names with their respective levels of selection (class_level) or a specific type of members
...which can take the value of True, Pseudo or Weak. Only members that have a global d.o.m verifying the arithmetic comparison ensured by the operator \(op_1 \) or have a type of \(member_type \) are considered in the selection process. The \(attribute_list \) in the RETRIEVE statement is the list of attributes to be delivered to the user. This statement permits also to select attributes of any class that is in interaction with one or more classes in the FROM statement. The ORDER BY statement is used to choose the way the list of entities is ordered. The Selection Express in the WHERE statement is a set of symbolic, numerical or logical conditions that should be verified by the attributes of all selected entities. When it is necessary, attributes-based conditions may be combined with appropriate select levels (attr_level) and only entities that their attributes’ values have a partial d.o.m verifying the arithmetic comparison ensured by the operator \(op_2 \) are selected. Some examples of data retrieve operations are enumerated below.

Query 1. Retrieve the name and type of supernovae that have d.o.m equal or greater to 0.7 and have luminosity greater to 5L, with partial d.o.m equal or greater to 0.9.

```
FROM supernovae WITH DOM ≥ 0.7
RETRIEVE SN_Name, Type_of_SN
WHERE Luminosity > 5L, WITH DOM ≥ 0.9
```

Query 2. Retrieve the name of all true supernovae, and the name and laboratory of their discoverers.

```
FROM True MEMBER OF supernovae
RETRIEVE SN_Name, Name OF discoverer,
Laboratory OF discoverer
```

Query 3. Retrieve location, luminosity and weight of all stars having d.o.m. greater to 0.75 and of type supernovae of type SN II and of weight greater to 10 W, with partial d.o.m greater to 0.5.

```
FROM star WITH DOM > 0.75
RETRIEVE Location, Luminosity, Weight
WHERE Type_of_Star=supernovae and type_of_SN=SN II and weight > 10W, WITH DOM > 0.5
```

Query 4. Retrieve dates of discover and names of all supernovae of type SN I that are located in milky way galaxy with a d.o.m. greater to 0.5 and having luminosity greater to 17L, with d.o.m less to 0.7.

```
FROM discovery, supernovae, galaxy
RETRIEVE SN_Name, Discovery_Date,
WHERE Type_of_SN = SN I and (galaxy.Name=milky-
way and galaxy.Location= supernovae.Location WITH
DOM >0.5) and Luminosity > 17L, WITH DOM < 0.7
```

![Graphical representation of the example database](image)

Figure 1: Graphical representation of the example database

4 CONCLUSION

In this paper, we have briefly reviewed basic concepts of FSM—a database model that has been recently proposed by the authors—and provide some notes on an extended query language adapted to it. In current time, we investigate the problem of the definition of partial membership functions through possibility and evidence theories. We are also concerned with several topics related to the implementation of a prototype of FSM.

REFERENCES