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Abstract   Rule based classification is a popular approach for decision making. It 

is also achievable that multiple rule based classifiers work together for group deci-

sion making by using ensemble learning approach. This kind of expert system is 

referred to as ensemble rule based classification system by means of a system of 

systems. In machine learning, an ensemble learning approach is usually adopted in 

order to improve overall predictive accuracy, which means to provide highly trusted 

decisions. This chapter introduces basic concepts of ensemble learning and reviews 

Random Prism to analyze its performance. This chapter also introduces an extended 

framework of ensemble learning, which is referred to as Collaborative and Compet-

itive Random Decision Rules (CCRDR) and includes Information Entropy Based 

Rule Generation (IEBRG) and original Prism in addition to PrismTCS as base clas-

sifiers. This is in order to overcome the identified limitations of Random Prism. 

Each of the base classifiers mentioned above is also introduced with respects to its 

essence and applications. An experimental study is undertaken towards comparative 

validation between the CCRDR and Random Prism. Contributions and Ongoing and 

future works are also highlighted. 

Keywords Data Mining · Machine Learning · Rule Based Classification · Ensemble 

Learning · Collaborative Decision Making · Random Prism 

1 Introduction 

Rule based classification is a common approach used for decision making. It is also 

feasible for multiple rule based classifiers to collaborate for group decision making 

by adopting ensemble learning approaches. This kind of expert system is referred 
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to as ensemble rule based classification system by means of a system of systems. In 

this context, the ensemble rule based classification system is seen as a super system 

and consists of a number of single rule based classification systems, each of which 

is seen as a sub-system of the ensemble rule based classification system. In machine 

learning, an ensemble learning approach is usually adopted in order to improve 

overall predictive accuracy, which means to provide highly trusted decisions. 

Ensemble learning can be done in parallel or sequentially. In the former way, 

there are no collaborations among different algorithms in training and only their 

predictions are combined for final decision making [1]. In this context, the final 

prediction is typically made by means of majority voting as part of the classification 

tasks. In the latter way of ensemble learning, the first algorithm learns a model from 

data and then the second algorithm learns to correct the former one etc [1]. In other 

words, the model built by the first algorithm is further corrected by the following 

algorithms sequentially. In parallel ensemble learning, a popular approach is to take 

sampling to a data set in order to get a set of samples. A classification algorithm is 

then used to train a classifier on each of these samples. The group of classifiers 

constructed will make predictions on test instances independently and final predic-

tions on the test instances will be made based on majority voting. A commonly used 

sampling method is Bagging [2]. The Bagging method is useful especially when the 

base classifier is not stable due to high variance of data sample. This is because the 

method is robust and does not lead to overfitting as the number of generated hy-

pothesizes is increased [1]. Some unstable classifiers include neural networks, de-

cision trees and some other rule based methods [3]. 

In this chapter, all of the base classifiers used for ensemble learning tasks are 

rule based classification methods, namely original Prism [4], PrismTCS [5] and In-

formation Entropy Based Rule Generation (IEBRG) [6]. All of the three methods 

follow ‘separate and conquer’ approach [7], which is one of the rule generation ap-

proaches. This is because each of the three methods generates if-then rules directly 

from training instances. The other approach of rule generation is referred to as ‘di-

vide and conquer’ approach [8], which generates classification rules in the interme-

diate form of decision trees. As the generation aims to construct decision trees, the 

above approach is also referred to as Top-Down Induction of Decision Trees 

(TDIDT). A principal problem that usually arises with rule based classification 

methods is the overfitting of generated hypothesis to training data [9]. As mentioned 

earlier, the Bagging method is robust and helps avoid overfitting for rule based clas-

sifiers. It thus motivates the use of Bagging as a sampling method for ensemble 

learning tasks, especially when rule based methods are used as base classifiers. 

The rest of this chapter is organized as follows. Section 2 introduces the three 

rule based classification methods, namely original Prism, PrismTCS and IEBRG. 

An existing ensemble learning method, called Random Prism [10, 11], is also intro-

duced in the Section 2 in order to comparatively analyze the performance of the 

method. Section 3 introduces an extended framework of ensemble learning, which 

is referred to as Collaborative and Competitive Random Decision Rules (CCRDR) 

and includes the three base classifiers mentioned above. An experimental study is 
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undertaken towards comparative validation between the CCRDR and Random 

Prism in Section 4. The contributions and further directions of this research area are 

also highlighted in Section 5. 

  

2 Related Work 

As mentioned in Section 1, this chapter investigates parallel ensemble learning ap-

proaches which use Bagging as the sampling method and rule based methods as 

base classifiers. Therefore, this section introduces three rule based methods, namely 

original Prism, PrismTCS and IEBRG, the Bagging method and Random Prism. 

2.1 Original Prism 

The original Prism method was introduced by Cendrowska in [4] and the basic pro-

cedure of the underlying Prism algorithm is illustrated in Fig. 1. This algorithm is 

primarily aimed at avoiding the generation of complex rules with many redundant 

terms [9] such as the ‘replicated subtree problem’ [4] that arises with decision trees 

as illustrated in Fig. 2. 

 

Execute the following steps for each classification (class= i) in turn and on the 

original training data S:  

1. S’=S. 

2. Remove all instances from S’ that are covered from the rules induced so far. If 

S’ is empty then stop inducing further rules 

3. Calculate the conditional probability from S’ for class=i for each attribute-

value pair.  

4. Select the attribute-value pair that covers class= i with the highest probability 

and remove all instances from S’ that comprise the selected attribute-value pair 

5. Repeat 3 and 4 until a subset is reached that only covers instances of class= i 

in S’. The induced rule is then the conjunction of all the attribute-value pairs 

selected.  

Repeat 1-5 until all instances of class i have been removed  

 

*For each rule, no one attribute can be selected twice during rule generation  

Fig. 1. Basic Prism algorithm [12] 
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Fig. 2. Cendrowska’s replicated sub-tree example [16, 17] 

The original Prism algorithm cannot directly handle continuous attributes as it is 

based on the assumption that all attributes in a training set are discrete. When con-

tinuous attributes are actually present in a dataset, these attributes should be discre-

tized by preprocessing the dataset prior to generating classification rules [12, 13, 

14]. In addition, Bramer’s Inducer Software handles continuous attributes as de-

scribed in [12, 13, 14].  

On the other hand, the original Prism algorithm does not take into account 

clashes, i.e. a set of instances in a subset of a training set that are identical apart 

from being assigned to different classes but cannot be separated further [12, 14]. 

Clashes usually occur in two principal ways: 

1) One of the instances has at least one incorrect record for its attribute values 

or its classification [12]. 

2) The clash set has both (or all) instances correctly recorded but it is impos-

sible to discriminate between them on the basis of the attributes recorded 

and thus it may be required to examine further attributes [12]. 

However, the Inducer software implementation [15] of Prism can handle clashes 

and the strategy of handling a clash is illustrated in Fig. 3. This way of dealing with 

clashes would result in underfitting of generated hypothesis to training data. This is 

because there would be a large number of instances that are not covered by the 

generated rule set if the rules that cover the instances are discarded. In testing stage, 

the way of clash handling would also make a large number of unseen instances left 

unclassified. This is because the algorithm does not generate a default rule that as-

signs a default classification (usually majority class) [15] to those instances that the 

generated rule set does not cover. 

Another problem that arises with Prism is tie-breaking, i.e. if there are two or 

more attribute-value pairs which have equal highest probability in a subset (see step 

3 in Fig.1). The original Prism algorithm makes an arbitrary choice in step 4 as 
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illustrated in Fig. 1 whereas the Inducer software makes the choice using the highest 

total target class frequency [12]. 

 

If a clash occurs while generating rules for class i: 

1. Determine the majority class for the subset of instances in the clash set.  

2. If this majority class is target class i, then compute the induced rule by assign-

ing all instances in the clash set to class i. If it is not, discard the whole rule.  

3. If the induced rule is discarded, then all instances that match the target class 

should be deleted from the training set before the start of the next rule induction. 

If the rule is kept, then all instances in the clash set should be deleted from the 

training data.  

Fig. 3. Dealing with clashes in Prism [12, 16, 17] 

 

Also, the original Prism may generate a rule set which may result in a classifica-

tion conflict in predicting unseen instances. This can be illustrated by the example 

below: 

Rule 1: If x=1and y=1 then class= a 

Rule 2: If z=1 then class= b 

What should the classification be for an instance with x=1, y=1 and z=1? One rule 

gives class a, the other one gives class b. A method is required to choose only one 

classification to classify the unseen instance [12]. Such a method is known as a 

conflict resolution strategy. Bramer mentioned in [12] that Prism uses the ‘take the 

first rule that fires’ strategy in dealing with the conflict problem and therefore it is 

required to generate the most important rules first. However, the original Prism can-

not actually introduce an order to a rule according to its importance as each of those 

rules with a different target class is independent from each other. As mentioned in 

[5, 13, 14], this version of Prism would restore the training set to its original size 

after the completion of rule generation for class i and before the start for class i+1. 

This indicates the rule generation for each class may be done in parallel so the al-

gorithm cannot directly rank the importance among rules with different target clas-

ses. Thus the ‘take the first rule that fires’ strategy may not deal with the classifica-

tion confliction well. 

 

 

2.2 PrismTCS 

Bramer pointed out that the original Prism algorithm always deletes instances 

covered by those rules generated so far and then restores the training set to its orig-

inal size after the completion of rule generation for class i and before the start for 
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class i+1. This results in a high number of iterations resulting in high computational 

cost [5] when the training data is very large. For the purpose of increasing the com-

putational efficiency, a modified version of Prism, called PrismTCS, was developed 

by Bramer [5]. PrismTCS always chooses the minority class as the target class pre-

assigned to a rule being generated as its consequence. Besides this, it does not reset 

the dataset to its original state and thus introduces an order to each rule according 

to its importance [5, 13, 14]. Therefore, PrismTCS is not only faster in generating 

rules compared with the original Prism, but also provides a similar level of classifi-

cation accuracy [5, 13, 14]. 

As mentioned in Section 2.1, original Prism has some disadvantages in dealing 

with continuous attributes, tie-breaking, clashes and classification conflict. For each 

of these issues, Bramer introduces a corresponding solution in [12]. Each of the 

solutions is also applied to PrismTCS for each of the corresponding issues. In com-

parison to original Prism, PrismTCS can deal with conflict of classification better. 

This is because PrismTCS generates a set of ordered rules as mentioned earlier in 

this section. However, similar with original Prism, the way of dealing with clashes 

also results in underfitting to training data. As mentioned earlier, PrismTCS always 

chooses the minority class in the current training set as the target class of the rule 

being generated. Since the training set is never restored to its original size as men-

tioned above, it can be proven that one class could always be selected as target class 

until all instances of this class have been deleted from the training set because the 

instances of this minority class covered by the current rule generated should be re-

moved prior to generating the next rule. This case may result in that the majority 

class in the training set may not be necessarily selected as target class to generate a 

list of rules until the termination of the whole generation process. In this case, there 

is not even a single rule having the majority class as its consequence (right hand 

side of this rule). 

Although PrismTCS can generate a rule set which includes a default rule as in-

troduced in [15] and thus leads to the decrease of number of unclassified instances, 

the default rule is likely to give a wrong classification to those unseen instances that 

are not covered by the generated rule set. This is because the assumption needs to 

be guaranteed that the training set covers complete patterns in a domain, which is 

in order to make the default rule unlikely to give wrong classifications. Otherwise, 

the rule set could still underfit the training set as the conditions of classifying in-

stances to the other classes are probably not strong enough. 

2.3 Information Entropy Based Rule Generation  

IEBRG is developed in [6] in order to overcome the limitations of both original 

Prism and PrismTCS. This method is attribute-value-oriented like Prism but it uses 

the ‘from cause to effect’ approach. In other words, it does not have a target class 

pre-assigned to the rule being generated. The main difference with respect to Prism 
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is that IEBRG focuses mainly on minimizing the uncertainty for each rule being 

generated no matter what the target class is. A popular technique used to measure 

the uncertainty is information entropy introduced by Shannon in [18]. The basic 

idea of IEBRG is illustrated in Fig.4 as below: 

 

1. Calculate the conditional entropy of each attribute-value pair in the 

current subset 

2. Select the attribute-value pair with the smallest entropy to spilt on, i.e. 

remove all other instances that do not comprise the attribute-value 

pair. 

3. Repeat step 1 and 2 until the current subset contains only instances of 

one class (the entropy of the resulting subset is zero). 

4. Remove all instances covered by this rule. 
Repeat 1-4 until there are no instances remaining in the training set. 

 

* For each rule, no one attribute can be selected more than once during gen-

eration. 

 

Fig. 4. IEBRG algorithm 

As mentioned in Section 2.1, all versions of Prism need to have a target class 

pre-assigned to the rule being generated. In addition, an attribute might be not rele-

vant to each particular classification and sometimes only one value of an attribute 

is relevant [19]. Therefore, the Prism method chooses to pay more attention to the 

relationship between attribute-value pair and a particular class. However, the class 

to which the attribute-value pair is highly relevant is probably unknown, as can be 

seen from the example in Table 1 below with reference to the lens 24 dataset recon-

structed by Bramer in [12]. This dataset shows that P (class=3|tears=1) =1 illustrated 

by the frequency table for attribute “tears”. The best rule generated first would be if 

tears=1 then class=3. 

Table 1. Lens 24 dataset example 

Class Label Tears=1 Tears=2 

Class=1 0 4 

Class=2 0 5 

Class=3 12 3 

total 12 12 

 

This indicates that the attribute-value “tears=1” is only relevant to class 3. How-

ever, this is actually not known before the rule generation. According to PrismTCS 

strategy, the first rule being generated would select “class =1” as target class as it is 

the minority class (Frequency=4). Original Prism may select class 1 as well because 

it is in a smaller index. As described in [12], the first rule generated by Original 
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Prism is “if astig=2 and tears=2 and age=1 then class=1”. It indicates that the com-

putational efficiency is slightly worse than expected and the resulting rule is more 

complex. When a large data set is used for training, the Prism method would be 

even likely to generate an incomplete rule covering a clash set as mentioned in Sec-

tion 2.2 if the target class assigned is not a good fit to some of those attribute-value 

pairs in the current training set. Then the whole rule would be discarded resulting 

in underfitting and redundant computational effort. 

In order to find a better strategy for reducing the computational cost, the IEBRG 

method is developed in [6]. In this method, the first iteration of the rule generation 

process for the “lens 24” dataset can make the resulting subset’s entropy reach 0. 

Thus the first rule generation is complete and its rule is represented by “if tears=1 

then class=3”. 

In dealing with continuous attributes, IEBRG takes the same way as applied to 

the Prism family, which includes original Prism and PrismTCS in the Inducer soft-

ware implementation. With regard to tie-breaking, IEBRG deals with this issue in 

the way similar to that Prism family does, which means that when two or more 

attribute-value pairs have the same smallest entropy value the one with the highest 

total frequency is selected as introduced by Bramer in [12]. IEBRG can also deal 

with conflict of classification well because the method also generates a set of or-

dered rules like PrismTCS. In dealing with clashes, majority voting, which assigns 

the most common classification of the instances in the clash set to the current rule 

[12], is usually used for IEBRG, especially when the objective is to validate this 

method and to find its potential in improving accuracy and computational effi-

ciency. 

In comparison with the Prism family, this algorithm would reduce significantly 

the computational cost when the training set is large. In addition, in contrast to 

Prism, the IEBRG method deals with clashes by assigning a majority class in the 

clash set to the current rule. This would potentially reduce the underfiting of rule 

set thus reducing the number of unclassified instances although it may increase the 

number of misclassified instances. As mentioned in [12], Prism prefers to discard a 

rule rather than to give a wrong classification when a clash occurs and thus is more 

noise tolerant than TDIDT. However, if the reason that a clash occurs is not due to 

noise and the training set covers a large amount of data, then it would result in seri-

ous underfitting of the rule set by discarding rules as it would leave many unseen 

instances unclassified at prediction stage. The fact that Prism would decide to dis-

card the rules in some cases is probably because it uses the so-called ‘from effect to 

cause’ approach. As mentioned in Section 2.1, each rule being generated should be 

pre-assigned a target class and then the conditions should be searched by adding 

terms (antecedents) until the adequacy conditions are met. Sometimes, it may not 

necessarily receive adequacy conditions even after all attributes have been exam-

ined. This indicates the current rule covers a clash set that contains instances of 

more than one class. If the target class is not the majority class, this indicates the 

search of causes is not successful so the algorithm decides to withdraw the task by 

discarding the incomplete rule and deleting all those instances that match the target 
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class in order to avoid the same case to happen all over again [13, 14]. This actually 

not only increases the irrelevant computation cost but also results in underfitting of 

the rule set. On the other hand, the IEBRG would also have the potential to avoid 

occurring clashes better compared with Prism. This is due to the strategy of rule 

generation from IEBRG as mentioned earlier in this section. 

2.4 Bagging 

As mentioned in Section 1, Bagging is a popular method of data sampling for en-

semble learning tasks due to its robustness in avoiding overfitting. The term Bag-

ging stands for bootstrap aggregating which is a method for sampling of data with 

replacement [1]. In detail, the Bagging method is to take a sample with a size as 

same as the original data set and to randomly select an instance from the original 

data set to be put into the sample set. This means that some instances in the original 

set may appear more than once in the sample set and some other instances may not 

even appear once in the sample set. According to the principle of statistics, the bag-

ging method would produce a sample that is expected to contain 63.2% of the orig-

inal data instances [1, 2, 10, 11]. Therefore, the Bagging method is useful especially 

when the base classifier is not stable due to high variance of data sample as men-

tioned in Section 1 and thus helpful to rule based classification methods in avoiding 

overfitting. For example, the method is successfully applied with PrismTCS into 

Random Prism for construction of ensemble learners [10, 11], which is further in-

troduced in Section 2.5. 

2.5 Random Prism 

Random Prism, an existing ensemble learning method [10, 11], follows the par-

allel ensemble learning approach and uses Bagging for sampling as illustrated in 

Fig.5. It has been proven in [10, 11] that Random Prism is a noise-tolerant method 

alternative to Random Forests [20]. However, the Random Prism has two aspects 

in which can be improved in training and testing stages respectively. The above two 

aspects are also mentioned with suggestions for further improvements in [10, 11]. 

The first aspect is that there is only a single base classifier, PrismTCS, involved 

in training stage for Random Prism, which cannot always generate strong hypothe-

sis (robust models). In fact, it is highly possible that a single algorithm performs 

well on some samples but poorly on the others. From this point of view, it is moti-

vated to extend the ensemble learning framework by including multiple base clas-

sifiers involved in training stage. This is in order to achieve that on each data sample 

the learner created is much stronger.  
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On the other hand, Random Prism uses weighted majority voting to determine 

the final prediction on test instances. In other words, each model is assigned a 

weight, which is equal to the overall accuracy checked by validation data from the 

sample. In prediction stage, each model is used to predict unseen instances and give 

an individual classification. The ensemble learning system then makes the final 

classification based on weighted majority voting instead of traditional majority vot-

ing. For example, there are three base classifiers: A, B and C. A predicts the classi-

fication X with the weight 0.8 and both B and C predicts classification Y with the 

weights 0.55 and 0.2 respectively so the final classification is X if using weighted 

majority voting (weight for X: 0.8> 0.55+0.2=0.75) but is Y if using traditional 

majority voting (frequency for Y: 2>1). However, for the weighted majority voting 

mentioned above, the strategy in determining the weight is not reliable enough es-

pecially for unbalanced data sets. This is because it is highly possible that a classi-

fier performs better on predicting positive instances but worse on negative instances 

if it is a two class classification task. The similar case can also happen in multi-class 

classification tasks. Therefore, it is more reasonable to use the individual accuracy 

for a single classification (e.g. true positive rate) as the weight. 

 

 
 

Fig. 5. Random Prism Framework with Bagging [10, 11]. 

Therefore, an extended framework of ensemble learning, referred to as Collabo-

rative and Competitive Random Decision Rules (CCRDR), is developed in order to 

overcome the limitations and further introduced in Section 3. 
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3 Collaborative and Competitive Random Decision Rules  

As mentioned in Section 2.5, Random Prism is a noise tolerant ensemble learning 

algorithm alternative to Random Forests [20]. However, it has two weak points in 

training and testing stages respectively and thus has space for improvement. This 

section introduces an advanced ensemble learning framework extended from Ran-

dom Prism with the aim to overcome the two weak points which are mentioned 

above and described in Section 2.5. This section introduces a new framework that 

addresses the two weak points. 

The framework developed in the authors’ recent research is referred to as Col-

laborative and Competitive Random Decision Rules (CCRDR) and illustrated in 

Fig.6, which indicates that the ensemble learning framework includes both cooper-

ative learning and competitive learning involved.  

 

 
 

Fig. 6. Procedures of Proposed Ensemble Learning 

The first weak point of Random Prism is that there is only a single base classifier 

involved in training stage, which cannot always generate robust models as men-

tioned in Section 2.5. In order to overcome the limitation, the ensemble learning 

framework is modified in the way that the framework can include multiple base 

classifiers for training. Due to this modification, there is competition involved 

among the classifiers constructed on a same sample of training data. In other words, 

there are multiple learning algorithms applied to each sample of training data, which 

implies that multiple classifiers are constructed on each sample. In this context, it 

becomes achievable to find better classifiers to be involved in testing stage and 

worse classifiers to be absent through competition among the classifiers. The com-

petition is based upon the weight (confidence) of each of the classifiers by means 



12                                                                                                                      H. Liu and A. Gegov  

of overall accuracy measured by validation data. In the extended framework, only 

the classifier with the highest weight (confidence) is eligible to be involved in test-

ing stage. The modification with regard to the first weak point is also reflected from 

the second part of the name of the method namely ‘Competitive Random Decision 

Rules’. The name of the method indicates that any rule based classification methods 

are eligible for being involved in training stage as base classifiers. This modification 

theoretically contributes to that on each sample of data the learners constructed be-

come much stronger. 

The second weak point is regarding the way of determining the weight of a clas-

sifier for weighted majority voting as mentioned in Section 2.5. In order to over-

come the limitation, confusion matrix, which reflects the individual accuracy for 

each single class such as true positive rate and true negative rate, is recommended 

in [10, 11]. However, the individual accuracy for a single classification reflected 

from confusion matrix is not effective in some special cases. In contrast, precision 

for a particular classification would be more reliable in determining the weight of a 

classifier. For example, there are 5 positive instances out of 20 in a test set and a 

classifier correctly predicts the 5 instances as positive but incorrectly predicts other 

5 instances as positive as well. In this case, the recall/true positive rate is 100% as 

all of the five positive instances are correctly classified. However, the precision on 

positive class is only 50%. This is because the classifier predicts 10 instances as 

positive and only five of them are correct. This case indicates the possibility that 

high recall could result from coincidence due to low frequency of a particular clas-

sification. Therefore, precision is sometimes more reliable in determining the 

weight of a classifier on a particular prediction from this point of view. Overall, 

both precision and recall would usually be more reliable than overall accuracy in 

determining weight of a classifier especially for unbalanced data sets but it is im-

portant to determine which one of the two metrics to be used in resolving special 

issues. 

The modifications to Random Prism with regard to its two weak points generally 

aim to improve the robustness of models built in training stage and to more accu-

rately measure the confidence of each single model in making a particular predic-

tion. In this chapter, original Prism, PrismTCS and IEBRG are used as base classi-

fiers in the CCRDR framework due to the better noise tolerance of Prism family in 

comparison to TDIDT as well as the advantages of IEBRG listed in Section 2.3 in 

comparison to Prism family. However, in general, this framework could incorporate 

any type of rule based classification methods or even other type of machine learning 

methods such as Neural Networks [36] and Support Vector Machine [37]. With re-

gard to the way to choose machine learning methods that are incorporated into the 

framework, it is typically based on theoretical analysis on the suitability of a partic-

ular method to a particular dataset. For example, some methods cannot directly deal 

with continuous attributes such as some rule based methods. In this case, it is re-

quired to discretize continuous attributes by preprocessing the dataset prior to train-

ing stage. One of popular approaches is ChiMerge [38]. There are also some meth-

ods that cannot effectively discrete attributes such as Neural Networks and Support 
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Vector Machine. In this case, it needs to split the discrete attributes into n binary 

attributes, while n is the number of values for the attribute, and each of the n binary 

attributes corresponds to a value of the original attribute. For example, gender is a 

discrete attribute with two values (male and female) and can be divided into two 

binary attributes named male and female respectively. Each of the binary attributes 

is to be judged either yes or no. If a dataset contains a large of discrete attributes 

and each of them has a large number of possible values, it would significantly in-

crease the number of attributes for the dataset resulting in the curse of dimensional-

ity [39]. On the basis of above description, one way to decide which methods are 

chosen for training could be based on the type of attributes as part of data charac-

teristic. On the other hand, as mentioned in Section 2.4, the training instances are 

randomly selected from original dataset and different methods may demonstrate 

different level of robustness with respect to the change of sample. Therefore, the 

decision on choosing methods could also be based on the robustness of a particular 

method validated in experimental studies. Appropriate selection of algorithms 

would obviously help increase the overall performance of using the CCRDR frame-

work with respects to both predictive accuracy and computational efficiency. The 

empirical validation of CCRDR framework against Random Prism is further intro-

duced in Section 4.  

The authors also define a novel way of understanding ensemble learning in the 

context of system theory by referring an ensemble classifier to as an ensemble rule 

based classification system. This is because an ensemble classifier actually consists 

of a number of single base classifiers as mentioned in Section 1. Therefore, in the 

context of system theory, an ensemble rule based classification system consists of a 

group of single rule based classification systems as mentioned in Section 1, each of 

which is a subsystem of the ensemble system. In other words, it is a system of sys-

tems like a set of sets in set theory. In addition, an ensemble rule based classification 

system can also be a subsystem of another ensemble system in theory. In other 

words, a super ensemble rule based classification system contains a number of clus-

ters, each of which represents a subsystem that consists of a group of single rule 

based systems. 

4 Comparative Validation 

The validation of CCRDR framework against Random Prism is in terms of classi-

fication accuracy. The experimental study is undertaken by splitting a data set into 

a training set and a test set in the ratio of 80:20. For each data set, the experiment is 

repeated five times and the average of the corresponding accuracies is used for com-

parative validation. The reason is that ensemble learning is usually computationally 

more expensive because the size of data set dealt with by ensemble learning is as 

same as n times the size of the original data set when using Bagging. In other words, 

a data set should be pre-processed to get n samples, each of which has the same size 
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of original data set. In addition, the proposed ensemble learning method includes 

two or more base classifiers in general (three base classifiers in this experiment) 

used for each of the n samples. Therefore, in comparison to single learning such as 

use of IEBRG or Prism, the computational efforts would be the same as 3*n times 

that conducted by a single learning task. In this situation, the experimental environ-

ment would be computationally quite constrained on a single computer if cross val-

idation is used to measure the accuracy. On the other hand, instances in each sample 

are randomly selected with replacement from the original data set. Thus the classi-

fication results are not deterministic and the experiment is setup in the way men-

tioned above to make the results more convincing. Besides, the accuracy performed 

by random guess is also calculated and compared with that performed by each cho-

sen algorithm. This is in order to check whether a chosen algorithm really works on 

a particular data set as mentioned earlier. The validation of the proposed ensemble 

learning method does not include this measure of efficiency. This is because, on the 

basis of above descriptions, the computation conducted using the proposed method 

is theoretically much more complex if it is done on a single computer. However, the 

efficiency can be easily improved in practice by adopting parallel data processing 

techniques and is thus not a critical issue. 

In addition, the comparison is also against the random classifier, which predicts 

classification by random guess. The corresponding accuracy depends on number of 

classifications and distribution of these classifications. For example, if the objective 

function is a two class classification problem and the distribution is 50:50, then the 

accuracy performed by random guess would be 50%. Otherwise, the accuracy must 

be higher than 50% in all other cases. This setup of experimental study is in order 

to indicate the lower bound of accuracy to judge if an algorithm really works on a 

particular data set. 

All of the data sets used in this evaluation are retrieved from UCI repository [21], 

some of which contain missing values in input attributes or class attributes. This is 

usually a far large issue that needs to be dealt with effectively as it would result in 

infinite loops for rule based methods in training stage. In machine learning tasks, 

there are typically two ways of dealing with missing values [12]: 

 

1) Replace all missing values by the most frequent occurring value for 

each attribute. 

2) Discard all instances with missing values. 

In this experimental study, the first way is adopted because all of the chosen data 

sets are relatively small. It indicates that if the second way is adopted both training 

and test sets would be too small to be representative samples. Under this kind of 

situation, the model generated is likely to introduce biased patterns with low confi-

dence especially if the model overfits the training data. However, this way of deal-

ing with missing values also potentially introduces noise to the data set. Thus such 

an experimental setup would also provide the validation with respect to the noise 

tolerance of an algorithm in the meantime. On the other hand, if missing values are 
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in the class attribute, then the best approach would be by adopting the second way 

mentioned above. This is because the first way mentioned above is likely to intro-

duce noises to the data sets and thus incorrect patterns and predictive accuracies 

would be introduced. It is also mentioned in [12] that the first way is unlikely to 

prove successful in most cases and thus the second way would be the best approach 

in these cases. In practice, the two ways of dealing with missing values can easily 

be achieved by using the implementations in some popular machine learning soft-

ware such as Weka [22, 23]. 

The validation is divided into two parts of comparison. The first part is to prove 

empirically that combination of multiple learning algorithms would usually outper-

forms a single algorithm as a base classier for ensemble learning with respect to 

accuracy. The second part is to prove that the use of precision instead of overall 

accuracy or recall as the weight of a classifier would be more reliable in making 

final prediction. In Table 2, CCRDR I represents that the weight of a classifier is 

determined by the overall accuracy of the classifier. In addition, the CCRDR II and 

III represent the weight determined using precision for the former and using recall 

for the latter.  

Table 2. Ensemble learning results 

Dataset  Random 

Prism 

CCRDR I CCRDR II CCRDR III Random classi-

fier 

anneal  71% 78% 79% 80% 60% 

balance-scale 44% 56% 68% 64% 43% 

diabetes 66% 68% 73% 68% 54% 

heart-statlog 68% 71% 74% 63% 50% 

ionosphere 65% 68% 69% 65% 54% 

lympth 68% 60% 89% 65% 47% 

car 69% 68% 71% 70% 33% 

breast-cancer 70% 72% 74% 73% 58% 

tic-tac-toe 63% 65% 66% 67% 55% 

breast-w 85% 75% 81% 75% 55% 

hepatitis 81% 84% 87% 82% 66% 

heart-c 70% 74% 83% 65% 50% 

lung-cancer 75% 79% 88% 75% 56% 

vote 67% 82% 95% 80% 52% 

page-blocks 90% 90% 90% 89% 80% 

 

The results in Table 2 show that all of the chosen methods outperform the random 

classifier in classification accuracy. This indicates that all of the methods really 

work on the chosen data sets. In the comparison between Random Prism and 

CCRDR I, the results show that the latter method outperforms the former method 

in 12 out of 15 cases. This indicates empirically that combination of multiple learn-
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ing algorithms usually helps generate a stronger hypothesis in making classifica-

tions. This is because the combination of multiple algorithms could achieve both 

collaboration and competition. The competition among these classifiers, each of 

which is built by one of the chosen algorithms, would make it achievable that for 

each sample of training data the learner constructed is much stronger. All of the 

stronger learners then effectively collaborate on making classifications so that the 

predictions would be more accurate. 

As mentioned earlier, the second part of comparison is to validate that precision 

would usually be a more reliable measure than overall accuracy and recall for the 

weight of a classifier. The results in Table 2 indicate that in 12 out of 15 cases 

CCRDR II outperforms CCRDR I and III. This is because in prediction stage each 

individual classifier would first make classifications independently and their pre-

dictions are then combined in making a final classification. For the final prediction, 

each individual classifier’s prediction would be assigned a weight to server for final 

weighted majority voting. The weight is actually used to reflect how reliable the 

individual classification is. The heuristic answer would be based on the historical 

record on how many times the classifier has recommended this classification and 

how correct it is. This could be effectively measured by precision. The weakness of 

overall accuracy is that this measure can only reflect the reliability of a classifier in 

average rather than in making a particular classification as mentioned in Section 

2.5. Thus overall accuracy cannot satisfy this goal mentioned above. In addition, 

although recall can effectively reflect the reliability of a classifier in making a par-

ticular classification, the reliability is affected by the frequency of a particular clas-

sification and thus cheats the final decision maker, especially when the frequency 

of the classification is quite low as mentioned in Section 3. Therefore, the results 

prove empirically that precision would be more reliable in determining the weight 

of a classifier for weighted majority voting. 

The basis of above description with regard to CCRDR validates that combination 

of multiple learning algorithms would be more effective in improving the overall 

accuracy of classification and that precision would be a more reliable measure in 

determining the weight of a classifier to successfully serve for weighted majority 

voting, especially on unbalanced data sets. 

5 Conclusion and Future Work 

This chapter reviews an existing ensemble learning method called Random Prism 

and three rule based classification methods, namely original Prism, PrismTCS and 

IEBRG. An extended framework of ensemble learning is developed, which is re-

ferred to as CCRDR and includes the three methods mentioned above as the base 

classifiers. The experimental study reports that CCRDR outperforms Random Prism 

in term of classification accuracy while the overall accuracy measured by validation 

data is used as the weight of a particular base classifier. In addition, the study also 
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reports that precision would usually be more reliable than recall and overall accu-

racy in measuring the confidence of a classification made by a classifier. However, 

all of the data sets used in the validation introduced in Section 4 are noise free and 

include well representative samples. Each method may have a particular level of 

noise tolerance and stability with regard to change of sample. Therefore, the authors 

will further check the tendency with respect to the change of level of predictive 

accuracy as the change of noise level. The authors will also further check the vari-

ance of the accuracy when the sample of training and test data is changed. These 

are in order to validate the noise tolerance and stability of the CCRDR against Ran-

dom Prism. 

    On the other hand, as mentioned in Section 4, ensemble learning methods are 

usually computationally more expensive than single learning methods such as 

IEBRG and Prism family. This is because the size of data set dealt with by ensemble 

learning is as same as n times the size of the original data set. In the CCRDR frame-

work, the size would be m× n times the size of the original data set, where m is the 

number of learning algorithms involved in training stage. However, as mentioned 

in Section 1, this type of ensemble learning tasks belongs to parallel ensemble learn-

ing, which indicates the tasks can be parallelized to improve the computational ef-

ficiency in both training and testing stages. In practice, each company or organiza-

tion may have branches in different cities or countries so the databases for the 

companies or organizations are actually distributed over the world. As the existence 

of high performance cloud and mobile computing technologies, the ensemble learn-

ing framework can also be easily transplant into distributed or mobile computing 

environments such as multi-agent systems [29]. 

However, the theoretical framework introduced in this chapter still has space for 

extension. The ensemble learning concepts introduced in the chapter focus on par-

allel learning, which means that the building of each classifier is totally parallel to 

the others without collaborations in training stage and only their predictions in test-

ing stage are combined for final decision making. However, the ensemble learning 

could also be done in sequential ways with collaborations in training stage. For ex-

ample, there are two learning algorithms involved; the first one learns a model and 

the second one learns to correct the former as mentioned in Section 1. This is a 

direction to extend the theoretical framework further. 

So far, ensemble learning concepts introduced in the machine learning literature 

lie in single learning tasks. In other words, all algorithms involved in ensemble 

learning need to achieve the same learning outcomes in different strategies. This is 

defined as local learning by the authors in the chapter. In this context, the further 

direction would be to extend the ensemble learning framework to achieve global 

learning by means of different learning outcomes. The different learning outcomes 

are actually not independent of each other but have interconnections. For example, 

the first learning outcome is a prerequisite for achieving the second learning out-

come. This direction of extension is towards evolving machine learning approach 

in a universal vision. To fulfil this objective, the networked rule bases as illustrated 
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in Fig.7 can actually provide this kind of environment for discovering and resolving 

problems in a global way.  

 

 

Fig. 7. Rule Based Network (modular rule bases) from [24, 25, 26, 27, 28] 

In this network, each node represents a single rule base. The nodes can be con-

nected sequentially or in parallel. In detail, each variable labelled xm-1, while m rep-

resents the number of layer in which the node locates, represents an input and y 

represents the output. In addition, each of these labels labelled zm-2 represents an 

intermediate variable, which means this kind of variable is used as output for a for-

mer rule base and then again as inputs for a latter rule base as illustrated in Fig.7. 

On the other hand, there are two kinds of nodes representing rule bases as illustrated 

in Fig.7, one of which is a type of standard rule bases and labelled RBm-1. This kind 

of nodes is used to transform the input(s) to output(s). The other type of nodes, in 

addition to the standard type, represents identities. It can be seen from the Fig.7 that 

this type of nodes does not make changes between inputs and outputs. This indicates 

the functionality of an identity is just like an email transmission, which means the 

inputs are exactly the same as outputs. 

In practice, a complex problem could be subdivided into a number of smaller 

sub-problems. The sub-problems may need to be solved sequentially in some cases. 

They can also be solved in parallel in other cases. In connection to machine learning 

context, each sub-problem could be solved by using a machine learning approach. 

In other words, the solver to each particular sub-problem could be a single machine 

learner or an ensemble learner of which a single rule base can consist. 

In military process modelling and simulation, each networked rule base can be 

seen as a chain of command (chained rule bases [24]) with radio transmissions 

(identities). In a large scale raid, there may be more than one chain of command. 
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From this point of view, the networked topology should have more than one net-

worked rule bases parallel each other. All these networked rule bases should finally 

connect to a single rule base which represents the Centre of command.  

The basis of above descriptions highlights the further directions of this research 

area. The extensions with respects to both sequential ensemble learning and net-

worked rule bases would improve the intractability among different algorithms or 

models during the process of collaborative decision making. In addition, this also 

improves towards reduction of complexity in problem solving by dividing a com-

plex problem into a set of simple problems. Therefore, the contributions would also 

be to complexity management [30], systems engineering [31, 32, 33, 34] and Big 

Data processing [35] in addition to machine learning. 
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