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Abstract— This work presents a dynamic neural network-
based (DNN) system identification approach for a pressurized
water nuclear reactor. The presented empirical modelling ap-
proach describes the DNN structure using differential equa-
tions. Local optimization algorithms based on unconstrained
Quasi-Newton and interior point approaches are used in the
identification process. The efficacy of the proposed approach
has been demonstrated by identifying a nuclear reactor core
coupled with thermal-hydraulics. DNNs are employed to train
the structure and validate it using the nuclear reactor data.
The simulation results show that the neural network identified
model is sufficiently able to capture the dynamics of the nuclear
reactor and it is suitably able to approximate the complex
nuclear reactor system.

Index Terms— Dynamic Neural Network, System Identifica-
tion, Modelling and Simulation, Pressurized Water Reactor.

I. INTRODUCTION

A nuclear reactor is a complex non-linear system whose
modelling using first-principles based approaches is a strenu-
ous task due to parameter variations, internal reactivity feed-
backs, parameter uncertainties, and unknown disturbances.
System parameters associated with reactor core, thermal-
hydraulics, and internal reactivity feedbacks differ signifi-
cantly with operating power levels. On the other hand, the
empirical modelling or system identification is a systematic
way of constructing a mathematical model of a dynamical
system from the measurement data.

In the last two decades, artificial neural networks (ANNs)
have been applied to the modelling and control of nuclear
reactors [1]–[7]. ANN possess good approximation abilities
for non-linear systems [8]–[11]. Among the approaches used
for NPP modelling and identification, the most applied
architecture has been the recurrent multilayer perceptron
[12]. The application of ANN-based techniques has shown
effective results. ANN has been applied to design soft-
computing-based control techniques. A diagonal recurrent
neural network-based controller is proposed to enhance the
temperature response of a PWR [4]. ANN-based controller
using the response of a self-tuning regulator has been applied
for wide-range power regulation [5]. An adaptive feed-
forward ANN-based controller is proposed for the power
level control of PWR [6]. The learning abilities of an ANN
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has been integrated with the decision-making capabilities of
fuzzy logic to develop a neuro-fuzzy power controller [7].

Dynamic neural networks (DNNs) are outlined to be
especially well suited for modelling non-linear systems [13]–
[17]. DNN can address time-dependent behaviour to include
transient phenomena and delay effects. These networks can
approximate multi-variable non-linear dynamical systems
and can be represented by non-linear state-space models.
These properties make them suitable to be used together
with nonlinear approaches such as feedback linearization
technique. In this work, a special DNN structure is imple-
mented for the identification of the PWR nuclear reactor.
This DNN consists of only one single-layer network, which
is favourable for control synthesis.

The rest of the paper is organized as follows: Section II
introduces the model of the non-linear PWR system. Section
III presents the identification strategy using DNNs. Section
IV presents DNN identification using local optimisation
techniques. Section V demonstrates the simulation results.
Finally, conclusions are drawn in section VI.

II. NON-LINEAR PWR MODEL

The core neutronics model can be expressed by the point
kinetics equations coupled with delayed neutrons precursors’
concentration [18] as,

dP

dt
=

ρt −
6∑
i=1

βi

Λ
P +

6∑
i=1

λiCi, (1)

dCi
dt

=
βi
Λ
P − λiCi, i = 1, 2, . . . 6. (2)

where P and Ci are neutronic power and delayed neutron
precursors’ concentration, respectively. λi and βi are decay
constant and fraction of delayed neutrons, respectively. Λ is
prompt neutron life time and ρt is total reactivity.

The neutronic model is lumped with core thermal-
hydraulics model to include reactivity feedback from fuel
and coolant temperatures [19]. The core thermal-hydraulics
model considered two lumps for representing coolant and
one lump to denote the fuel node. The model is given by,

dTf
dt

= HfPn −
1

τf
(Tf − Tc1) , (3)
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1

τc
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(Tc1 − Tcin) , (4)

dTc2
dt
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1

τc
(Tf − Tc1)− 2

τr
(Tc2 − Tc1) . (5)



Fig. 1: Reactor core identification.

where Tf , Tc1, and Tc2 denote the temperatures at fuel,
coolant node 1 and node 2, respectively. Hf and Hc are
proportionality constants. τf , τc, and τr are time constants.
The effects of variation in temperatures of fuel and coolants
are considered in terms of reactivity feedback. Thus, the total
reactivity is given by

ρt = ρrod + ρf + ρc1 + ρc2

ρt = ρrod + αfTf + αc (Tc1 + Tc2) (6)

where ρrod, ρf , ρc1, and ρc2 denote the reactivity due to
control rod, fuel temperature, coolant temperature at node
1 and 2, respectively. αf and αc denote the temperature
coefficients of reactivity due to fuel and coolant, respectively.

III. SYSTEM IDENTIFICATION USING DNN

A. Input Design

In this work, for the system identification of the nuclear
reactor, the reactivity and neutronic power are used as
input to and output from the system. The block diagram
representation of the proposed architecture is given in Fig.
1. The input reactivity signal is chosen with random steps
so as to exhibit the non-linear behaviour of the dynamic
system. The input signal consists of a discrete time signal
where random amplitude may occur at different sample time
with a probability,

u (k) =

{
u (k − 1) ,with probability (1− α) ,
b+ e (k) ,with probability (α) .

(7)

where e (k) is a Gaussian random signal with the mean value
b. The PWR model described by (1–6) is perturbed by the
reactivity input. The estimation data is then formed with
input as reactivity and power as output. The input signal
is designed such that it is persistently excited to ensure that
the data contain enough useful information. This will allow
to obtain a good estimate of the model.

B. DNN Model Structure

DNNs have the characteristics of not only receiving
external inputs but also allow neurons to have feedback
connections with themselves, in other words they deal with
the processing of the past knowledge and store the current
information for the next stage. In this paper, a single layer
of DNN is used to identify the dynamics. The DNN can be

Fig. 2: A dynamic neuron.

expressed as follows:

ẋ(t) = f (x (t) , u (t) , θ)

ŷ(t) = h (x (t) , θ) (8)

where x ∈ RN are the states of the network, u ∈ Rm, is the
external input, θ is a vector of parameters of the network, and
y ∈ Rp is the output. f and h are functions that represent
the structure of the network and the relationships between
the output and state, respectively.

It is known that the internal state of the output units of a
continuous time DNN are capable to approximate any finite
time trajectory of a given dynamic system [16]. The structure
of the DNN used in this study is a specific case of (8) and
an illustration of the DNN structure is given in Fig. 2 [14].
Here, the structure is defined by a one-dimensional array of
N neurons and can be expressed as follows:

ẋi = −βixi +

N∑
j=1

ωijσ (xj) +

m∑
j=1

γijuj (9)

where βi, ωi, and γi are adjustable weights. The vectored
form of (9) is given by:

ẋ = −βx+ ωσ (x) + γu (10)
ŷ = Cx (11)

where x are coordinates on RN , ω ∈ RN×N , σ (x) =[
σ (x1) · · · σ (xN )

]T
, γ ∈ RN×m, u ∈ Rm, C =[

Ip×p 0p×(N−p)
]
, and β ∈ RN×N is a diagnosable matrix

with diagonal elements
{
β1 · · · βN

}
.

IV. OPTIMISATION-BASED DNN IDENTIFICATION

The block diagram of the proposed identification scheme
is shown in Fig. 3. The algorithm tunes the parameters of the
DNN identified model to match the response of the identified
model with the measurement data of the real plant. This is
done by minimizing the quadratic objective function formed
using the measured and estimated outputs. The nonlinear
unconstrained optimization problem [14] can be formulated



Fig. 3: Optimisation-based DNN identification scheme.

as,

min
θ
Fm (θ, Zm) =

1

2M

M∑
k=1

‖y (tk)− ŷ (tk |θ )‖2 (12)

where Zm =
[
y (tk) u (tk)

]
k=1,2··· ,M is a training dataset,

θ is a parameter vector, y (tk) is the measured output, and
ŷ (tk |θ ) is the estimated output. Eq. (12) can be solved using
local optimization techniques which estimate the optimal
value within a neighbouring set of candidate solutions. A
wide spectrum of methods exists for local optimization [20].
Among them, two gradient-based approaches, Quasi-Newton
and Interior-Point algorithms are employed here.

A. Quasi-Newton Algorithm

Quasi-Newton methods have been developed for solving
nonlinear equations that result from a minimization problem.
The principle of these iterative algorithms is to progress step
by step from an initial point θ0 along line search directions
hk in order to converge on the desired optimal point θopt.
At the kth stage of the algorithm, the inverse of the hessian
matrix Hk is computed to find the search direction. The basic
form of the algorithm is described by the following steps:

1) Choose an initial point θ0 and initialize H0 (usually
H0 = I)

2) Compute the gradient ∇f (θk) and the direction search
hk = −Hk∇f (θk)

3) Perform a line search from θk in the direction hk using
the following equation: θk+1 = θk + Tshk, where Ts
is the step size

4) Compute Hk+1 and go back to step 2.

The Quasi-Newton algorithm employed here is the Broyden-
Fletcher-Goldfarb-Shanno algorithm [21] and can be defined
as follows:

Hk+1 = Hk +
qkq

T
k

qTk sk
− Hksks

T
kH

T
k

sTkHksk
(13)

where sk = θk+1− θk is the parameter change between two
iterations and qk = ∇f (θk+1) − ∇f (θk) is the gradient
change between two iterations.

B. Interior-Point Algorithm

Interior-Point methods solve linear as well as nonlin-
ear convex optimization problems that contain inequalities
as constraints [22]. The optimisation problem minimizes
the objective function subjected to sub-nonlinear equality
constraints (h (θ) = 0) and variable inequality constraints
(g (θ) ≤ 0). It can be written as follows:

min
θ
Fm (θ) , subject to h (θ) = 0 and g (θ) ≤ 0 (14)

Interior-point methods also referred as barrier methods. The
deviation of these methods associates with (12) the barrier
problem:

min
θ,s

Fm (θ) = minFm (θ)− µ
∑
i

log (si) ,

subject to h (θ) = 0 and g (θ) + s = 0 (15)

where µ is a positive parameter, si are the slack variables and
log is the logarithm function. The barrier approach consists
of finding solutions of the barrier problem for a sequence of
positive barrier parameters µk that converges to zero.

V. SIMULATION RESULTS

The technique presented in the previous section has been
applied to identify the PWR model. A case study is carried
out to train and validate the identified DNN-based identified
PWR model by applying the input signal with random steps.
The training of the DNN is carried out using the Quasi-
Newton and Interior-Point algorithms. The best model is
found to be of second-order. The DNN model structure can
be represented as follows:

ẋ1 = −β1x1 + ω11σ (x1) + ω12σ (x2) + γ1u (16)
ẋ2 = −β2x2 + ω21σ (x1) + ω22σ (x2) + γ2u (17)
y = Cx (18)

The parameters of the Quasi-Newton (Q-N) estimated DNN
model is as follows:

β =

[
0.5767 0

0 −0.1038

]
;ω =

[
−0.4523 0.7762
−0.1850 −0.3670

]
;

γ =
[

0.620 0.1837
]T

;C =
[

1 0
]
. (19)

The parameters of the Interior-Point (I-P) estimated DNN
model is as follows:

β =

[
1.161 0

0 −0.0326

]
;ω =

[
−1.8181 1.0324
−0.1320 −0.0945

]
;

γ =
[

1.3223 −0.0361
]T

;C =
[

1 0
]
. (20)

Fig. 4 shows the designed training input and the corre-
sponding output employed for the model estimation exercise.
Fig. 4b plots the output of the models estimated by the
Quasi-Newton and Interior-Point algorithms for the reactivity
input shown in Fig. 4a. It compares the measures output
with the estimated model responses. Both the algorithms are
sufficiently able to estimate the non-linear behaviour.

Fig. 5 shows the validation dataset employed for model
validation. The validation data is selected such that it is
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(a) Training input trajectory.
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(b) Training output trajectory.

Fig. 4: Variation of measured and estimated normalized
power signals Quasi-Newton and Interior-Point algorithms.

different from the estimation data so as to test the capabilities
of the identified models. The validation input is plotted in
Fig. 5a and the corresponding model response is plotted in
Fig. 5b. Both the estimated models can track the measured
response. Another validation dataset is chosen to validate
the performance of the estimated models. Fig. 6 shows
the validation dataset employed for model validation. The
validation input is plotted in Fig. 6a and the corresponding
model response is plotted in Fig. 6b. It can be observed
that both the DNN identified models are sufficiently able
to track the measured power signal over a large range. The
good estimation and validation outcomes in both cases are
due to the good non-linear approximation capabilities of the
DNN identified model, however, it can be noticed that the
two DNNs are not tracking well the system output when
this is presenting peaks. The proposed non-linear approach
is able to approximate the reactor process with a second-
order DNN identified model thereby reducing the model
order significantly.

A quantitative performance assessment is conducted by
computing the root mean squared error (RMSE) between the
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(a) Validation input trajectory.
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(b) Validation output trajectory.

Fig. 5: Variation of measured and estimated normalized
power signals Quasi-Newton and Interior-Point algorithms.

measured output and the estimated response. It is given by,

RMSE =

√√√√ 1

K

K∑
i=1

(yi − ŷi)2, (21)

where K is the total number of samples. yi and ŷi are
measured output and estimated output, respectively. Table I
compares the modelling performances of the Quasi-Newton
and Interior-Point algorithms. It is found that the values of
RMSE for both the approaches are similar. Both the local
optimization technique perform equally well, however, the
Quasi-Newton algorithm gives slightly better performance
over the Interior-Point algorithm. These simulation results
show acceptable performance of the obtained DNN model.
For further performance improvement, global optimization
algorithms such as direct and genetic algorithms can be
used as part of the DNN training. This will further reduce
the estimation error and thus will improve the modelling
performance.

VI. CONCLUSIONS

In this study, a system identification technique based on a
single layer DNN structure is presented for the identification
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(a) Validation input trajectory.

0 100 200 300 400 500 600 700

Time (s)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
or

m
al

iz
ed

 P
ow

er

Measured
DNN (Q-N)
DNN (I-P)

(b) Validation output trajectory.

Fig. 6: Variation of measured and estimated normalized
power signals Quasi-Newton and Interior-Point algorithms.

TABLE I: Root mean squared error

Model Training Validation-I Validation-II
Q-N 1.87× 10−4 1.56× 10−4 3.41× 10−2

I-P 9.50× 10−5 7.99× 10−5 3.87× 10−2

of a PWR-type nuclear reactor. Unconstrained Quasi-Newton
and Interior-Point algorithms are used for the identification
process. The results demonstrate that the obtained DNN
can achieve accurate estimation performance. The proposed
DNN has the advantage of simple structures, which makes it
convenient to be used for control design and especially to be
applied together with feedback linearisation approach. The
future work will be to design a control strategy based on the
proposed DNN model.
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