A Shrinkage-Core Model for the Degradation of High-Nickel Cathodes (NMC811) in Li-Ion Batteries: Passivation Layer Growth and Oxygen Evolution

Abir Ghosh, Jamie M. Foster, Gregory Offer, and Monica Marinescu

1 Department of Mechanical Engineering, Imperial College London, SW7 2AZ, United Kingdom
2 The Faraday Institution, United Kingdom
3 School of Mathematics and Physics, University of Portsmouth, Hampshire PO1 2UP, United Kingdom
4 Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India

A shrinking-core model for high-nickel positive electrode materials that undergo a structural reorganisation involving oxygen loss and the formation of a disordered (spinel or rock-salt structure) passivation layer is presented for the first time. The model is a thermally coupled continuum model based on the single-particle model and is based upon a LiNi0.8Mn0.1Co0.1O2 (NMC811) layered oxide in this instance. The theoretical framework assumes a shrinking core mechanism, where lattice oxygen, [O], release occurs at the interface between the bulk and the passivation layer, and the rate of reaction is controlled by either [O]-diffusion through the passivation layer or the reaction kinetics at the interface. As the passivation layer grows, the core of active positive electrode material shrinks giving rise to both loss in active material (LAM) and loss in lithium inventory (LLI) through trapping lithium in the passivation layer, giving rise to capacity fade. The slower diffusion through the passivation layer also gives rise to power fade. The model predicts two limiting cases, “diffusion dominated” if [O]-diffusion is slow, and “reaction dominated” if [O]-diffusion is fast, relative to the reaction rate of [O]-release and also the thickness of the passivation layer.

© 2021 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/1945-7111/abdc71]

Manuscript submitted October 14, 2020; revised manuscript received December 30, 2020. Published February 3, 2021. This paper is part of the JES Focus Issue on Selected Papers of Invited Speakers to IMLB 2020.

Supplementary material for this article is available online

Li-ion batteries are the energy storage of choice for the rapidly increasing market of electric and hybrid vehicles.1 Their uptake would be significantly increased if the cycle life of these batteries for relevant operational conditions were improved. The study of degradation mechanisms is important to make knowledge available for battery manufacturers to produce Li-ion batteries with higher specific capacity at a significantly lower cost.2-5 In this regard, the choice of the positive electrode (PE) active material4,5 of Li-ion batteries and their degradation mechanisms6 play a major role. High-nickel layered lithium nickel manganese cobalt oxide (LiNi0.8Mn0.1Co0.1O2, NMC) PE active materials are now preferred because of their high specific capacity and stable layered structures for the intercalation and deintercalation of Li-ions.6-10 Even though the theoretical capacity of NMCs is as high as ~280 mA h g−1,11 LiNi0.8Mn0.1Co0.1O2 (NMC811) provides the highest reversible capacity in practice (~200 mA h g−1) than other NMC compositions.11-13 The higher reversibility capacity is attainable due to the presence of more extractable Li-ions within the usable voltage window. However, NMC811 structures are not stable when a large fraction of Li-ions are removed during charging of the cell and the structures are susceptible to capacity loss.13,14

High-nickel NMC structures are thermally unstable at high temperatures ≥170 °C rather than at room temperature, 15-17 However, Li-ion-depleted unstable oxide NMC811 structures are thermodynamically unstable even at battery operating temperature (20 °C–80 °C) when cycled at higher potentials (~4.3 V vs Li/Li+). The layered structures undergo a two-phase transition to form disordered spinel (Li(Ni0.8Mn0.1Co0.1)2O4) and rock-salt (LiNi0.8Mn0.1Co0.1O) structures, sequentially.16,19 Both phase transition steps are accompanied by the release of lattice oxygen, [O].1,15-17 For NMC811 materials ageing below 60 °C, the spinel and rock-salt surface layer formation happens at the electrode surface while the bulk remains intact which increases the overpotential at the electrode.1,17 Several experimental studies have claimed that the increase in the overpotential causes a significant capacity fade.22 The formation of [O] from the phase transition reaction is also one of the sources of O2, CO2, and CO which can also be formed from the electrochemical oxidation of the electrolyte.22,24 A recent study has shown an increase in temperature increases the amount of O2 evolution by forming thicker surface layers.25 The instantaneous formation of disordered spinel and rock-salt surface layer has been observed experimentally once the electrode is exposed to the electrolyte solution even without any electrochemical cycling.26 The formation of the surface layer is not only limited to high-nickel NMCs or other NMC compositions,11 but has also been reported for LiNiO2.27 LiNi0.8Co0.2O2,28,29 and LiNi0.8Co0.2Al0.8O2 (NCA)30 active materials. A wide range of surface layer thickness from 15 nm–100 nm has been reported for different battery chemistries at different cycling, operating, and storage conditions.11,27,28

To date, theoretical degradation studies of PEs have been limited to empirical fitting.31-33 A few molecular-scale studies have confirmed the transition of layered NMC structures to disordered spinel and rock-salt surface layers and the thermodynamic stability of the surface layers over the Li-ion-depleted layered structures.34 The influence of this structural phase change, O2 evolution, and other PE degradation mechanisms such as transition metal (TM) dissolution33-36 and positive electrode solid electrolyte layer (pSEI) formation37,38 on the cell storage and operating performance (such as capacity fade and impedance rise) have not been studied theoretically. On the contrary, many detailed negative electrode (NE) degradation studies where the physics of specific degradation mechanisms such as solid electrolyte layer (SEI) growth,39-42 Li-plating,43,44 loss of active material,45,46 and particle cracking47 have been explored, as well as their influence on the cell behaviour. Only a few studies including PE degradation are mostly integrated within whole-cell coupled degradation modelling studies without exploring the appropriate physics of specific PE degradation mechanisms.30,39 The release of O2 from PE has been conventionally modelled as electrolyte oxidation at the PE side, using a simple kinetically limited Tafel equation.49 A recent study proposed that the capacity fade is a linear function of the oxidation current density and used the Tafel equation to model the oxidation rate.49 The electrolyte oxidation reaction also produces protons (H+) which are eventually consumed at the NE surface to produce H2, which in turn

© Electrochemical Society Member.

E-mail: abir.ghosh@imperial.ac.uk; abir.che@iitbhu.ac.in
promotes TM dissolution. There are few shrinking core models exists to track the phase transition of electrodes for different PE active materials. However, the lack of a consensus on the equations to describe PE degradation motivates the present study.

In summary, the phase transition of high-nickel NMCs due to structural reconstruction during high potential cycling or storage is frequently encountered in experiments and thus an important PE degradation mechanism. However, there are no studies that have attempted modelling of this phenomenon by understanding the physics behind this degradation mechanism. Thus, no whole-cell coupled degradation model is complete where PE undergoes structural reconstruction. In this study, a continuum scale model is developed based upon a theoretical framework considering structural changes in a high-nickel NMC and how this affects the degradation of a Li-ion cell, for the first time. The developed model can be used as a missing-link to incorporate this degradation mechanism in the whole-cell continuum scale degradation models based on either single-particle models (SPMs), as presented in this study, or pseudo-2D models of Li-ion batteries. The cell considered in this study is a commercial 3.35 Ah Li-ion battery (INR18650-MJ1, LG Chem) with NMC811/SiC chemistry, where the acronym “SiC” stands for silicon doped graphite NEs. A thermally coupled SPM is modified to incorporate the dynamics of surface layers and the diffusion of the evolved-[O]. The disordered surface layers act as a passivation layer (PL), which resists the diffusion of Li-ions during intercalation/deintercalation and promotes TM dissolution. Therefore, in the mSPM, we have assumed a combined core–shell structure as the initial configuration. The core and shell region of the PE particle can be defined as, \(r \in (0, s(t)) \) and \(r \in (s(t), R_p) \), respectively. Here, \(s \) represents the position of the core–shell interface and \(R_p \) is the radius of the particle boundary.

(i) The transition of the NMC811 layered structure to shell structure is thermodynamically more favourable at low stoichiometries

(ii) The model developed here does not contain degradation in the NE, as the study is focused on the influence of structural changes of PE active materials on cell behaviour. The results obtained using the developed model are compared and contrasted with those available for the conventional beginning of life (BOL) SPM.

Theoretical Formulation

Figure 1 schematically shows the modified single-particle method (mSPM) used to study the degradation of an NMC811 positive electrode (PE) because of the passivation layer (PL) formation and [O]-evolution. The model presented in this current work is developed based on the previous single-particle models (SPMs). A SPM is common in Li-ion battery modelling and the model assumes that even though each electrode is comprised of many different electrode particles, the behaviour of each of these particles is sufficiently similar that no significant errors are engendered by solving in just one representative particle. The SPM is chosen for this study because it is the simplest model within which to demonstrate a new degradation model and is suitable to treat the operational conditions considered in this study. According to the experimental observations mention in the previous section the PL forms at the surface of PE particles while the bulk of the electrode remains non-degraded. Thus, the PE particle in the mSPM consists of the non-degraded layered NMC (termed as “core”) and the degraded disordered NMC (termed as “shell”), as shown in Fig. 1b. Subsequently, the shell thickens to increase the degradation in the PE which is accounted for in the mSPM by capturing the movement of the core–shell interface. The shell can be an individual spinel, or rock-salt phase, or a combination of both phases. They are lumped together in this model, but the effect of different shell layers can be accounted for by varying the average properties of the shell without changing the theoretical formulation presented.

In the formulation, the notation, \(t \), represents time and bold variables denote vectors. The variables with subscripts preceded by a comma represent partial differentiation with respect to the subscripted variable and the over-dot represents the total time derivative.

Positive electrode (PE).—Hypothesis.—Based on the available experimental studies on the structural changes of NMC-based PEs, the following assumptions were made,

(i) The validity of our model begins after the first cycle during which it is assumed that a thin shell has already formed on the particle surface. Therefore, in the mSPM, we have assumed a combined core–shell structure as the initial configuration. The core and shell region of the PE particle can be defined as, \(r \in (0, s(t)) \) and \(r \in (s(t), R_p) \), respectively. Here, \(s \) represents the position of the core–shell interface and \(R_p \) is the radius of the particle boundary.

(ii) The transition of the NMC811 layered structure to shell structure is thermodynamically more favourable at low stoichiometries.

Figure 1. (a) Schematic representation of a rechargeable Li-ion battery, consisting of negative electrode (NE), positive (PE) electrode, separator, and current collectors and simplification of the same to the single-particle model (SPM). Silicon doped graphite (SiC) and high-nickel nickel manganese cobalt oxide (NMC811) are assumed as NE and PE materials, respectively. \(R_n \) and \(R_p \) are the radii of the equivalent single intercalation particle of the entire NE and PE, respectively. \(J_n \) and \(J_p \) are the molar fluxes of Li-ions at the surface of the NE and PE, respectively. (b) Modified PE particle morphology of the proposed mSPM, consisting of a shrinking core (non-degraded layered transition metal oxides, \(\text{Li}_y \text{M}_2 \)) and an increasing shell (degraded disordered rock-salt phase, \(\text{Li}_y \text{MO} \)) inside the particle surface. Li-ions diffuse slower in the shell, which is created by the phase transition reaction leading to diffusion of [O] from the dynamic core–shell interface, \(s(t) \).
(i.e. corresponding to high cell state of charge (SoC)).11 To capture this effect in the mSPM, we consider that the chemical reaction that forms the shell occurs at the core–shell interface, $s(t)$, and only when the local concentration of Li-ions (c_p) at the core–shell interface, $s(t)$, is less than a critical concentration of Li-ions in the PE (c^*) i.e., $c_{p|_{s(t)}} < c^*$. The shell thickness increases when this formation reaction takes place. Simultaneously, the core of the PE shrinks (shrinking core) by the same thickness, to maintain the size of the particle. This can be replaced with a more complex relationship if required in a later evolution of the model.

(iii) The diffusion of Li-ions across the particle is slower through the disordered shell.61 Therefore, in the mSPM, the effective diffusivity of Li-ions in the shell (D_s) is assumed to be lower than the effective diffusivity of the Li-ions in the core (D_p).

(iv) The formation of the shell leads to loss of lithium inventory (LLI). During the formation of the shell, the chemical reaction ($\text{Li}_2\text{MO}_2 \leftrightarrow \text{Li}_2\text{MO} + [\text{O}]$) consumes Li-ions,22,24,36 and the resulting shell is assumed to be comprised of a fraction ($1 - \phi$) of degraded disordered NMC material and a fraction ϕ of active layered NMC811. The non-degraded material that remains in the shell provides the intercalation sites on which the redox reactions take place, and these rates are assumed to be well-described by Butler-Volmer kinetics. It follows that the overall capacity of the shell is $c_{p,\text{max}}^{\text{shell}} = \phi c_p^{\text{max}}$ and that the LLI is $c_{\text{Li}}^{\text{shell}} = c_{p,\text{max}}^{\text{shell}} = \phi$. Since $\phi < 1$ is Li-ions are consumed in the reaction that forms the shell.

(v) The [O] produced from the chemical reaction diffuses out from the PE to create O_2, CO_2, and CO evolution.22,24 Therefore, in the mSPM, the [O] is diffusing out from the core–shell interface, $s(t)$, with an effective diffusivity, D_o. We do not account for the further effects of gas generation, such as pressure change within the cell and loss of interfacial area.

Governing equations.—The diffusion of Li-ions through the core and shell is governed by the Fick’s second law,

$$c_{p,t} + \nabla \cdot \mathbf{F}_p = 0 \text{ in } 0 < r < s(t), \quad \text{[1]}$$

$$c_{o,t} + \nabla \cdot \mathbf{F}_o = 0 \text{ in } s(t) < r < R_p, \quad \text{[2]}$$

Here, $\mathbf{F}_p(=-D_p \nabla c_p)$ is the local mass flux of Li-ions in the core and $\mathbf{F}_s(=-D_s \nabla c_s)$ is the effective mass flux of Li-ions in the shell. We emphasize that we use the term effective in the latter case because the shell is composed of multiple materials and \mathbf{F}_s is the number of mols of Li-ions passing a unit area of the composite per unit time and not the local flux within the non-degraded portion of the shell. The variables, c_p and c_o are the local concentration of Li-ions in the core and shell, respectively.

The diffusion of the [O] through the shell is also governed by the Fick’s second law as,

$$c_{o,t} + \nabla \cdot \mathbf{F}_o = 0 \text{ in } s(t) < r < R_p, \quad \text{[3]}$$

where $\mathbf{F}_o = -D_o \nabla c_o$ and c_o are the local mass flux and concentration of oxygen in the shell, respectively.

Boundary conditions.—The following boundary conditions are used. The particle flux of Li-ions at the centre ($r = 0$) of the electrode particle is zero due to symmetry. However, the Li-ions particle flux at the electrode particle boundary ($r = R_p$) is equal to the molar flux, J_p, which is related to the total applied current, I_{app}, passing through the cell and the total electroactive surface area of the PE, A_p. Thus, the boundary conditions are

$$\mathbf{F}_p|_{r=0} = 0, \quad \text{[4]}$$

$$F_{l|_{r=R_p}} = J_p = I_{app}/FA_p. \quad \text{[5]}$$

Here, F_l is the Faraday’s constant while F_o and F_p are the r-directional mass fluxes of Li-ions in the shell and core, respectively. In this work, we have defined I_{app} as positive during charging of the cell and negative during discharging of the cell. The total electro-active area can be given by, $A_p = 3 \pi \bar{c}_p V_p/R_p$, where, \bar{c}_p is the volume fraction of the active material of the electrode and V_p is the total volume of the electrode.

One of the boundary conditions at the core–shell interface ($r = s$) is that the concentrations of Li-ions at the interface must be continuous

$$c_p|_{s(t)} = c_o|_{s(t)}, \quad \text{[6]}$$

The second boundary condition at the core–shell interface can be determined from the facts that (i) Li-ions available for intercalation/deintercalation can either leave through the particle surface or be consumed in the shell, and (ii) the total number of Li-ions is conserved. Using these constraints together with Eq. 6, the second boundary condition at $r = s$ becomes

$$(F_o - F_p)|_{s(t)} + \dot{s}(1 - \phi) c_{p|_{s(t)}} - \dot{s} c_o = 0, \quad \text{[7]}$$

where c_o is the [O]-concentration in the core which is a constant. A step by step derivation of Eq. 7 is provided in Appendix A. The initial concentrations of Li-ions in the core and shell are

$$c_p|_{t=0} = c_o|_{t=0} = c_{p|_{t=0}}. \quad \text{[8]}$$

The boundary condition for [O]-diffusion at the core–shell interface ($r = s$) can be derived from the fact that the total amount of oxygen contained within PE particle and leaving the particle surface is conserved. The [O]-concentration is assumed to be zero at the particle-electrolyte boundary ($r = R_p$) because the [O] at the particle boundary is expected to react very fast. Thus, the boundary conditions for [O]-diffusion are

$$F_{o|_{r=R_p}} + \dot{s}(c_o - c_o) = 0, \quad \text{[9]}$$

$$c_o|_{r=R_p} = 0. \quad \text{[10]}$$

Here, F_o denotes the r-directional mass flux of [O] in the shell. A step by step derivation of Eq. 9 is provided in Appendix A. The initial [O]-concentration in the shell is assumed to be

$$c_o|_{t=0} = 0, \quad \text{[11]}$$

and increased while the shell thickens. This also indicates that we always start our simulations a long period after the thin shell has formed on the particle surface.

Core–shell interface.—The core–shell interface may advance towards the centre of the particle whenever the Li-ion concentration (c_p) at the interface is below the critical concentration (c^*) that allows the NMC phase transition reaction to occur

$$\text{Li}_x\text{MO}_2 \stackrel{k_1}{\longrightarrow} \text{Li}_{x-1/2}\text{MO} + [\text{O}], \quad \text{[12]}$$

where k_1 and k_2 denote the forward and backward chemical reaction rate constants, respectively. The reaction kinetics of Eq. 12 governs the interface dynamics in terms of redefined reaction rate constants (k_1 and k_2) and concentration of [O] (c_o) as,

$$\dot{s} = \begin{cases} \frac{k_1 - k_2 c_o}{c_p} & c_p < c^* \\ 0 & c_p > c^* \end{cases} \quad \text{[13]}$$
Here, the backward reaction is rate-limiting as this requires oxygen which may not be available. The redefined reaction rate constants are explained in the derivation of Eq. 13 in Appendix A.

Negative electrode (NE).—The governing equations and boundary conditions used for the NE in the proposed mSPM are similar to those used in conventional SPM models.53 The diffusion of Li-ions through the NE is governed by Fick’s second law and mass flux boundary conditions at the centre of the particle and the particle-electrolyte interface are supplied. Thus, Li-ion diffusion equations at the NE are,

\[c_{n,0} + \nabla \cdot F_n = 0, \]
\[F_n|_{b=0} = 0, \]
\[F_n|_{b=-R_n} = J_n = -I_{app}/FA_n. \]

Here, \(c_n \) and \(F_n = -D_n \nabla c_n \) denote local Li-ion concentration and local mass flux of Li-ions in the NE, with \(D_n \), the effective diffusivity of Li-ions in the NE. \(F_n \) represents the \(r \)-directional particle flux of Li-ions and \(J_n \) is the molar flux of Li-ions at the electrode surface. The total electroactive area of the electrode (\(A_n \)) can be defined as, \(A_n = 3\epsilon_n V_n/R_n \), where, \(\epsilon_n \) and \(V_n \) represent the volume fraction of solid-phase active material and the total volume of the electrode, respectively. The initial concentration of Li-ions in the NE is,

\[c_{n,0} = c_n. \]

Electrochemical reaction kinetics.—Electrochemical reactions happen at the electrode-electrolyte interface of each electrode as a result of Li-ion intercalation/deintercalation. The rate of such reactions is assumed to follow Butler-Volmer (BV) kinetics,

\[J_i = k_{i0}c_i^\alpha (c_{i,\text{surf}}^{\text{max}} - c_i^{\text{surf}})^{(1-\alpha)}(c_{i,\text{surf}}^{\text{surf}})\frac{0.5F}{RT} \eta_i - \exp\left(\frac{0.5F}{RT} \eta_i\right). \]

Here, the subscript “i” denotes either “s” or “p” for PE and “n” for NE. At the PE surface, the properties corresponding to the shell are denoted with the subscript “s”. PE variables in the core are denoted with the subscript “p” and correspond to properties of the non-degraded active material. Notably, the BV kinetics is applied on the particle surface i.e. at \(r = R_p \) for PE and at \(r = R_n \) for NE. \(k_{i0} \) represents the electrochemical reaction rate constant at the electrode-“i”/electrolyte interface, \(\alpha \) represents the charge transfer coefficient, \(c_i \) is the Li-ion concentration in the electrolyte (solution phase) and \(c_{i,\text{surf}}^{\text{max}} \) is the maximum Li-ion concentration in the electrode-“i” particle (solid phase). \(c_{i,\text{surf}}^{\text{surf}} \) is the Li-ion concentration at the electrolyte-“i” particle surface, \(R \) is the ideal gas law constant, \(T \) denotes the temperature of the cell, and \(\eta_i \) is the overpotential. The overpotential at each electrode can be defined in terms of solid-phase potential \((\phi_n) \), solution-phase potential \((\phi_{en}) \), and open-circuit potential (OCP, \(U_i \)), related as shown in Eq. 19.

The effect of the electrolyte phase on the cell voltage is modelled via a resistor as, \(\phi_{en} - \phi_n = \eta_{app}R_n \), where \(R_n \) is the electrolyte resistance.55 The difference between the solid phase electrode potentials defines the cell voltage (\(V_{cell} \)) as, \(\phi_{en} - \phi_n = V_{cell} \). Using Eq. 19 and the electrolyte as a resistor simplification, the cell voltage is obtained as, \(V_{cell} = \eta_{app}R_n \). The Eq. 18 can be solved for \(\eta_i \) to obtain an explicit expression for cell voltage as,

\[V_{cell} = U_p(x_p^{\text{surf}}) - U_n(x_n^{\text{surf}}) + \frac{2RT}{F} \left[\ln\left(\frac{m_p^2 + 4 + m_p}{2}\right) - \ln\left(\frac{m_n^2 + 4 + m_n}{2}\right) \right] + I_{app}R_n. \]

The governing equations and boundary conditions used for the NE in the proposed mSPM are as follows. The NE is,

\[m_p = I_{app}[FA_p k_{0p}c_{e}^{0.5} c_{i,\text{surf}}^{\text{max}} (1 - x_s^{\text{surf}})^{0.5}(x_n^{\text{surf}})^{0.5}] - 1, \]

\[m_n = I_{app}[FA_n k_{0n}c_{e}^{0.5} c_{i,\text{surf}}^{\text{max}} (1 - x_s^{\text{surf}})^{0.5}(x_n^{\text{surf}})^{0.5}] - 1. \]

Here, the variable \(x_s^{\text{surf}} \) denotes the surface stoichiometry at each particle boundary which can be defined as, \(x_s^{\text{surf}} = c_s^{\text{surf}}/c_{i,\text{surf}}^{\text{surf}} \). The variation of \(U_i \) with \(x_s^{\text{surf}} \) is provided in Figs. S1a and S1b of Electronic supplementary information (ESI) (available online at stacks.iop.org/JES/168/020509/mmedia).

Thermal model.—Cell temperature plays an important role in battery degradation in general, and for the degradation of NMC811 PE in particular. Thus, the proposed mSPM includes a lumped thermal model. Spatial temperature inhomogeneities across the cell are neglected in this formulation. The change in the cell temperature \((T) \) with time \((t) \) is governed by the general energy balance as,

\[\rho v C_p \dot{T} = \text{I}_{app} [U_p,T(x_p^{\text{surf}}) - U_n,T(x_n^{\text{surf}})] + I_{app}(\eta_p - \eta_n + I_{app}R_e) - hA_s (T - T_{amb}). \]

Here, \(\rho \) is the density, \(v \) denotes the volume, \(C_p \) is the specific heat capacity, and \(A_s \) is the surface area of the cell. The parameter, \(h \) denotes the heat transfer coefficient between the cell and the surroundings. The initial cell temperature is assumed to be equal to the ambient temperature \((T_{amb}) \),

\[T|_{t=0} = T_{amb}. \]

The first right-hand side term of Eq. 23 represents the reversible heat generation, due to change in entropy, while the second right-hand side term represents the irreversible heat generation due to reaction kinetics and Ohmic losses in the electrolyte. The third term on the right-hand side represents the cooling of the cell by exchanging heat via convection with the surroundings. Radiative heat loss is ignored.

The diffusivities, electrochemical and chemical reaction rate constants, OCPs, and electrolyte resistance are all functions of temperature, via the following relations,

\[D_i(T) = D_i^{ref} \exp \left[\frac{E_{act,0}}{R} \left(\frac{1}{T_{ref}} - \frac{1}{T} \right) \right], \quad \text{(i = p, s, n, o)}, \]

\[k_{i0}(T) = k_{i0}^{ref} \exp \left[\frac{E_{act,0}}{R} \left(\frac{1}{T_{ref}} - \frac{1}{T} \right) \right], \quad \text{(i = p, n)}, \]

\[k_{ij}(T) = k_{ij}^{ref} \exp \left[\frac{E_{act,0}}{R} \left(\frac{1}{T_{ref}} - \frac{1}{T} \right) \right], \quad \text{(j = 1, 2)}, \]

\[U_i(x_s^{\text{surf}}, T) = U_i(x_s^{\text{surf}}, T_{ref}) + U_i T k_{ij}^{ref} (T - T_{ref}), \quad \text{(i = p, n)}. \]
\[R_s (I_{\text{app}}, T) = \theta_1 + \theta_2 (T - T_{\text{amb}},) \]
\[\theta_1 = R_s (0, T_{\text{amb}}) + R_{\text{c}, \theta_1} \frac{\text{d}T}{\text{d}t} |_{\text{amb}} I_{\text{app}} \]
\[\theta_2 = R_s (T |_{\text{amb}} + R_{\text{c}, \theta_2} \frac{\text{d}T}{\text{d}t} |_{\text{amb}} I_{\text{app}} \]

[29]

The diffusivities and reaction rate constants stated in Eqs. 25–27, 35, 62 follow an Arrhenius’ relationship whereas, the OCP and electrolyte resistance temperature dependencies are obtained using Taylor’s series expansion as stated in Eqs. 28–29. Here, \(T_{\text{ref}} \) is the reference temperature. The constants \(D_i^{\text{ref}}, k_0^{\text{ref}}, \) and \(k_0^{\text{ref}} \) are the diffusivity, electrochemical reaction rate, and chemical reaction rate at the reference temperature, respectively. The notations, \(E_{\text{a}, i}, E_{\text{a}, k}, \) and \(E_{\theta, i} \) denote activation energies for diffusivity, electrochemical reaction rate, and chemical reaction rate, respectively. The variation of \(U_{\theta, T} \) with \(\xi \) for each electrode is provided in Figs. S1c and S1d of ESI. The parameters, \(\theta_1 \) and \(\theta_2 \) are fitting parameters obtained from Eq. 29.

Numerical Implementation

Mapping.—The coupled governing equations, boundary and initial conditions, and cell temperature equations are made nondimensional and the dimensionless equations are presented in Appendix B. Henceforth, the variable radius \(r \) of the PE and NE is denoted as \(r_p \) and \(r_n \) respectively. To solve the set of coupled non-dimensional equations [Eqs. 1.1–1.11, 12, each computational domain (i.e. core, \(r_p \in (0, \xi) \), and shell, \(r_s \in (r_p, r_p) \) is mapped onto a one-dimensional space \((0, 1) \) with the help of the transformations, \(\eta = r_p / \xi \), for the core and \(\chi = (r_p - s) / (1 - s) \) for the shell. The transformed set of coupled equations [Eqs. 1.1–1.11, 12] are shown in Appendix C. The non-dimensional equations [Eqs. 1.13–1.16] for the NE domain, \(r_n \in (0, R_n) \), are already mapped into the transformed \((0, 1) \) space.

Implementation.—The transformed partial differential equations (PDEs) [Eqs. 1.1–1.11, 12 and B.1.3–B.16] for three different computational domains, core, shell, and NE, are discretized in space using central differencing scheme with a half-node interpolation. The resulting ordinary differential equations (ODEs) are integrated over time by employing the adaptive Runge–Kutta method with orders 4 and 5 mixed (RK45). The set of non-dimensional temperature equations [Eqs. 1.1–1.11, 12] are treated similarly. For most of the simulations performed, it was found that 50 points in space for each computational domain is sufficient for satisfactory convergence. All the numerical simulations have been performed using the commercial software package MATLAB (v. R2018a). The subroutine “ode45” is employed to implement the RK45 method for time-marching solutions. The model is capable of predicting the results 10 times faster than the experimental time.

The time-dependent concentration profiles \((c_p, c_v, c_o, \text{and } c_{\text{eh}}) \) and the time-dependent cell temperature \((T) \) is obtained employing the molecular scheme outlined above. After making the variables non-dimensional, surface concentrations are equivalent to surface stoichiometries \((x^{\text{surf}}/c^{\text{surf}}) \) and \(x^{\text{surf}}/c^{\text{surf}} \). The surface stoichiometries together with dimensional cell-temperature \((T = T^*T_{\text{eq}}) \) are used to obtain cell-voltage,

\[V_{\text{cell}} = U_p (x^{\text{surf}}, T_{\text{cell}}) - U_n (x^{\text{surf}}, T_{\text{cell}}) + (U_p (T_{\text{cell}} - x^{\text{surf}} - T_{\text{cell}}) - U_n (T_{\text{cell}} - x^{\text{surf}} - T_{\text{cell}}) \cdot T - T_{\text{cell}}) \]
\[+ \frac{2RT}{F} \ln \left(\frac{m_p^2 + 4 + m_p}{2} \right) \]
\[+ \ln \left(\frac{m_n^2 + 4 + m_n}{2} \right) \]
\[+ I_{\text{app}} [\theta_1 + \theta_2 (T - T_{\text{amb}})] \]

[30]

Equation 30 is obtained from Eqs. 18–19 and including temperature dependencies from Eqs. 26, 28–29.

Validation.—We have validated our model with existing literature results of thermally coupled SPM for predicting the beginning of life (BOL) behavior of a Li-ion cell.\(^5^5\) In the literature the set of model equations were solved analytically using the eigenfunction expansion method and then validated with corresponding experimental results. In our presented model (mSPM) we have set \(\xi = 1 \) and \(s = 0 \) to obtain BOL equations and solved using the above stated numerical methodology using the same parameter values as in Ref. 55. The validation results are shown in Fig. S2 of ESI. We have shown that the variation in cell voltage \((V_{\text{cell}}) \) and temperature \((T) \) with capacity \((\text{Cap}) \) obtained using mSPM are in excellent agreement with those in the literature.

Parameterisation.—The Li-ion cell considered here is a commercial 3.35 Ah Li-ion battery with NMC811/SiC chemistry. The parameter values for this cell are taken mostly from the available literature.\(^5^8\) A few of the parameters are empirically fitted according to the BOL simulation results obtained from our simulations and the existing experimental behaviour of the particular cell. The parameterisation results are presented in Fig. S3 of ESI. The BOL parameters are listed in Table I. Table II presents the standard values of the degradation parameters considered for the simulations and the variation considered for these parameters are mentioned in the figure captions. Due to the lack of experimental results and relevant molecular-scale information, a wide range of values is considered for most of the degradation parameters. The effect of the value and interplay of degradation parameters on cell behaviour is the subject of the next section.

Results and Discussion

Several studies have suggested that layered structures of PEs (Li\(_x\)MO\(_y\), M can be Co, Mn, Ni, or any combination of these transition metals) are thermodynamically unstable whenever \(y < 0.5 \), which limits their reversible capacity to 50% of their theoretical capacity.\(^1^1,2^7–3^0\) For high-nickel NMC materials a Li-content below \(y < 0.4 \) causes a phase transition.\(^1^1,2^2\) The critical Li-ion concentration \((c^*) \) is set to \(c^* \approx 0.4 \). The interplay between the chemical reaction rate for the formation of the shell and the \([O]\)-diffusivity through the shell will determine the rate of shell formation. The increase in the shell thickness can cause both power and capacity fade by slowing down Li-ion diffusion. Considering the above, we have focused on exploring the influences of the \([O]\)-diffusivity \((D_o) \) through the shell, reaction rate constants \((K_v \text{ and } K_p) \), Li-ion-diffusivity \((D_i) \) through the shell, amount of Li-ions lost \((\phi) \) in shell formation, and initial shell thickness \((r_p - s) \) on the evolution of the cell behaviour to uncover the physics of this degradation mechanism.

All the simulations presented in this study have considered: (i) the cell is being charged from 2.5 V (0% SoC, start of charging) to 4.2 V (100% SoC, end of charging) using a constant current of 1.675 A, (ii) the PE has an initial shell thickness \(s_0 \), and (iii) the phase transition reaction (Eq. 12) occurs whenever the Li-ion concentration \((c_n) \) at the core–shell interface \((s) \) drops below the critical Li-ion concentration \((c^*) \). All simulation results are presented using non-dimensional variables (refer Appendix B), except cell voltage \((V_{\text{cell}}) \) and capacity \((\text{Cap}) \).

Concentration profiles.—mSPM predictions during a constant current charging are shown in Fig. 2, with an emphasis on the time evolution of concentration profiles in the PE and their effect on the shell thickness. Following the experimental observations (as discussed previously in the “Theoretical Formulation” section) the PE has an initial shell thickness as shown schematically by case A of Fig. 2a. The shell thickness increases whenever \(c_p \) at \(s \) is below \(c^* \) following the reaction kinetics of Eq. 13. The end of charge cross-sectional morphology of the PE is presented by case B of Fig. 2a. Figure 2b shows the variation of Li-ion concentrations \((c_p \text{ and } c_v) \) with the PE particle radius, \(r_p \). Curves 1–11 represent the evolution
Table I. Dimensional values used for the mSPM simulations. All the values are taken from an existing work. The superscript “c” denotes the calculated values whereas the superscript “e” denotes “estimated” values empirically fitted with the experimentally observed results reported in the same literature from where all the other values are taken.

3.35 Ah NMC811/SiC (INR18650-MJ1, LG Chem Cell) Li-ion battery parameters

<table>
<thead>
<tr>
<th>Variables (Unit)</th>
<th>Positive Electrode (NMC811)</th>
<th>Negative Electrode (SiC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_i (m3)</td>
<td>4.7×10^{-6}</td>
<td>6.2×10^{-6}</td>
</tr>
<tr>
<td>ε (%)</td>
<td>74.5</td>
<td>69.4</td>
</tr>
<tr>
<td>R_p (\mu m)</td>
<td>3.8</td>
<td>6.1</td>
</tr>
<tr>
<td>c_i^{max} (mol m$^{-3}$)</td>
<td>49340 c</td>
<td>34257 c</td>
</tr>
<tr>
<td>Stoichiometry (x_i)</td>
<td>100% SoC</td>
<td>0% SoC</td>
</tr>
<tr>
<td>D_i^{ref} (m2 s$^{-1}$)</td>
<td>1.0×10^{-14} c</td>
<td>1.0×10^{-14} c</td>
</tr>
<tr>
<td>k_i^{ref} (m$^{2.5}$ mol$^{-0.5}$ s$^{-1}$)</td>
<td>1.0 $\times 10^{-11}$ c</td>
<td>3.2 $\times 10^{-11}$ c</td>
</tr>
<tr>
<td>$E_{a_{\text{li}}}/R$ (K)</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>$E_{a_{\text{si}}}/R$ (K)</td>
<td>3600</td>
<td>3600</td>
</tr>
<tr>
<td>α</td>
<td>1000</td>
<td>0.5</td>
</tr>
<tr>
<td>F (C mol$^{-1}$)</td>
<td>96487</td>
<td></td>
</tr>
<tr>
<td>R (J mol$^{-1}$ K$^{-1}$)</td>
<td>8.3145</td>
<td></td>
</tr>
<tr>
<td>ρ (kg m$^{-3}$)</td>
<td>2761.7</td>
<td></td>
</tr>
<tr>
<td>ν (m2)</td>
<td>16.5 $\times 10^{-6}$</td>
<td></td>
</tr>
<tr>
<td>C_p (J kg$^{-1}$ K$^{-1}$)</td>
<td>918.8</td>
<td></td>
</tr>
<tr>
<td>h_A (J s$^{-1}$ K$^{-1}$)</td>
<td>0.093</td>
<td></td>
</tr>
<tr>
<td>T_{ref} (K)</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>I_{app} (A)</td>
<td>3.35 (1.0 C)</td>
<td></td>
</tr>
</tbody>
</table>

The maximum concentrations of Li-ions (c_i^{max}) in the positive and negative electrodes at the beginning of life are calculated as, $c_i^{\text{max}} = \frac{\text{Capacity of the cell}}{\Delta \text{SoC} \times \alpha \times V_i \times F}$, where ΔSoC represents the change in SoC.

For NE, $c_i^{\text{max}} = \frac{(0.852 - 0.002) \times 0.694 \times 6.2 \times 10^{-6} \times 96487}{3.35 \times 3600} = 34257 \text{ mol m}^{-3}$ and

For PE, $c_i^{\text{max}} = \frac{(0.942 - 0.222) \times 0.745 \times 4.7 \times 10^{-6} \times 96487}{3.35 \times 3600} = 49340 \text{ mol m}^{-3}$.

Table II. Estimated values used for the shell region and side reaction parameters for the mSPM simulations.

<table>
<thead>
<tr>
<th>Variables (Unit)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{i_{\text{ref}}}^{\text{ref}}$ (m2 s$^{-1}$)</td>
<td>1.0×10^{-15}</td>
</tr>
<tr>
<td>$D_{i_{\text{ref}}}^{\text{ref}}$ (m2 s$^{-1}$)</td>
<td>1.0×10^{-17}</td>
</tr>
<tr>
<td>$E_{a_{\text{li}}}/R$ (K)</td>
<td>1200</td>
</tr>
<tr>
<td>$E_{a_{\text{si}}}/R$ (K)</td>
<td>1200</td>
</tr>
<tr>
<td>K_1</td>
<td>0.1</td>
</tr>
<tr>
<td>K_2</td>
<td>0.01</td>
</tr>
<tr>
<td>K_{ij}/R (K) (j = 1, 2)</td>
<td>3600</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.7</td>
</tr>
</tbody>
</table>

denotes the phase transition. A closer observation of the core–shell interfacial positions of the curves 7–11 reveals the shifting of the core–shell interface (circular symbols) towards the centre of the PE particle which indicates the increase in the shell thickness. The shifting of the interfacial position is identified and marked in Fig. 2b which is magnified in Fig. 2c for a clear demonstration of the increase in the shell thickness with time. Curve 11 shows the concentration profile obtained from the simulations at the end of charging and the consequent shell thickness of the PE particle can be schematically shown by case B. Fig. 2d shows the variation of shell thickness ($R_p - s$) with time. Initially, the shell thickness remains constant (initial shell thickness remains persistent as shown by case A) till c_p at s reduces below c^g. After that, there is a linear increase in shell thickness with time. Consequently, the PE particle consists of a thicker shell at the end of charging (case B) as compared to the start of charging (case A). The variation in the shell thickness profile shown in plot (d) confirms that the simulations can capture the dynamics of the shell growth. We expect the onset of the reaction may need to be described by a
more complex onset function, but we have chosen the simplest function possible for this paper to demonstrate the principle. It is important to note that the passivation layer formation and lattice oxygen, [O], evolution reaction is a chemical reaction, not electrochemical, therefore it will occur whenever \(c_p \) at \(s \) is below \(c^* \) regardless of whether the current is flowing or not. Therefore, this model is capable of retrieving PE degradation during cycling and calendar ageing.

As described earlier, the chemical reaction responsible for the structural changes of PE produces [O] at the core–shell interface (s). Figure 3a shows the [O]-concentration profiles with time. The sudden increase in \(c_O \) at \(s \) is because of the inception of the chemical reaction as shown by curves 7 and 8 in the plot (a). Curves 8–11 shows the gradual increase in \(c_O \) at \(s \) with shell thickness growth. The zero-concentration boundary condition at the PE particle boundary creates the driving force for [O] to diffuse out. Recent experimental studies show that the amount of gas (O\(_2\), CO\(_2\), CO) produced increases with an increase in the spinel/rock-salt layer (i.e. shell) thickness. The reason behind the evolution of these gases is the reaction of reactive [O] with the electrolyte when the cell is charged to between 4.0–4.5 V. The results obtained from the mSPM presented here could be used to reproduce the same observation,\(^{22,24,25}\) if additional equations to describe the [O] reacting with electrolyte species were to be included.

Figures 2d and 3a distinctly show the growth of shell thickness \((R_p - s)\) and increase in [O]-concentration \((c_O)\) at the core–shell interface \((s)\) happen simultaneously with time. Figure 3b shows the time-dependent concentration profile of Li-ions, as they diffuse in the temperature profile. At the end of charging, with the increase in shell thickness increases the over-potential \((\text{increase in } c_{\text{out}} \text{ increases } n_p)\). Accordingly, the irreversible heat term \((\text{second term of the right-hand side of Eq. 23})\) becomes significantly positive together with the reversible heat term. Thus, the cell temperature increases rapidly at the end of charge, by the joint effect of irreversible and reversible heat sources. The shell formation increases the resistance of the cell to increase the cell temperature. Figures 2 and 3 uncover the shell and [O]-formation dynamics and their influence on the Li-ion concentration profiles of PE and temperature of the cell.

Capacity fade.—The influence of shell formation and [O]-evolution on the performance of the cell is investigated in a step by step manner via simulated cell voltage for a C/2 charge, as shown in Fig. 4. The capacity of the cell is defined as,

\[
\text{Cap} = \frac{1}{3600} \int_{t_0}^{t_f} |I_{app}| \, dt.
\]

Here, \(t_f \) is the time at the end of charge. Figure 4b shows four possible hypothetical PE configurations while the NE particle is always in the BOL state. The cell voltage-capacity curves shown in Fig. 4b are obtained from Eqs. 30 and 31. Case A shows a BOL SPM model, where the PE particle has no shell. The cell voltage \((V_{\text{cell}})\) variation with the capacity \((\text{Cap})\) of the cell for case A is shown by curve A in Fig. 4b. We consider the capacity obtained in this case as the baseline 100% capacity of the cell. Inclusion of a shell layer with
a finite thickness of s_1 (as shown in case B) changes the diffusion dynamics of the Li-ions in the PE as discussed in Fig. 2. Slower diffusivity of the Li-ions (D_s) through the shell reduces the surface concentration (c_{surf}) as shown by the concentration profiles in Fig. 2b. The open-circuit potential (OCP) profiles shown in Figs. S1a and S1b show that the OCP for the PE (U_p) gradually increases with the reduction in x_p. The faster reduction in x_p for case B compared to case A causes a reduction in the useable or accessible capacity when the upper cell voltage limit is fixed at 4.2 V as shown by the curve B in Fig. 4b (see inset). This effect would manifest as capacity and power fade. Although, in this article, we have only illustrated capacity fade for constant current charging. A pulse/step charging-discharging current can be used as input to obtain the corresponding variation in cell voltage with time (voltage profile). These current-voltage results can be used to quantify the power fade as one would do in an experimental setting.

The material properties of the core and shell are different, so their maximum intercalatable Li-ion capacity is different too. Case C represents a PE consisting of a shell with a lower maximum Li-ion capacity compared to the core. This, therefore, reduces the actual baseline capacity of the PE, essentially it is a type of loss of active material (LAM), accompanied by a loss of lithium inventory (LLI). Therefore, for this model to reproduce actual capacity fade, the capacity of the shell must be lower than the core. In case D, the passivation layer formation and [O]-evolution reaction is turned on, and begins to change the behaviour of the cell as soon as the Li-ion concentration reduces below c^*. The increase in the shell thickness,
and O-concentration profile across the cell. Figure 4 summarizes that the initial presence and D after cycling the cell many times or storage at high voltages increases both the forward rate \((\text{broken lines})\). Plots (a) and (b) show the variation of Li-ion concentration \((\text{broken lines})\). Plot (c) shows the time evolution of shell thickness \((R_p - s)\). Plot (d) shows the variation in cell voltage \((V_{\text{cell}})\) with capacity \((\text{Cap.})\). The parameter values used in the simulations are, \(s_i = 0.99\), \(T_{\text{amb}} = 298\ \text{K}\), \(I_{\text{pp}} = 0.2\), \(c^* = 0.3\), and \(K_1 = 0.01\). The other essential parameters used for these simulations are listed in Tables I and II.

O-diffusion vs reaction kinetics.—The diffusion of O and the reaction kinetics of both the passivation layer formation and the [O]-evolution reaction are the main phenomena that control the rate of degradation of the PE. Figure 5 shows the effect of [O]-diffusivity \((D_o)\) on the concentration profiles \((c_p\) and \(c_o\)), shell growth \((R_p - s)\), and cell capacity \((\text{Cap.})\). An increase in \(D_o\) reduces the Li-ion concentration at the PE particle surface \((c^*_{\text{surf}})\), as shown by the broken lines \((1' - 4')\) with respect to the solid lines \((1 - 4)\) in Fig. 5a. However, [O]-concentration \((c_o)\) at core–shell interface \((s)\) is much higher \((\text{line 4})\) when [O]-diffusivity \((D_o)\) is lower in the shell as shown in Fig. 5b. Higher \(D_o\) ensures \(c_o\) remains low at \(s\) which drives the shell formation reaction in the forward direction. The forward reaction enhances shell formation which increases shell thickness \((R_p - s)\) near the PE particle boundary as shown in Fig. 5c. Figure 5d verifies that a higher [O]-diffusivity coefficient \((D_o)\) leads to higher capacity fade, as it enhances shell growth, as discussed in Fig. 4.

Figure 6 presents the influence of reaction kinetics on the Li-ion and [O]-concentration profiles \((c_p\) and \(c_o\)), shell growth \((R_p - s)\), and capacity \((\text{Cap.})\) of the cell. Figure 6a shows a reduction in \(c^*_{\text{surf}}\) with the increase in the forward rate \((K_1)\) of the phase transition reaction. Increasing \(K_1\) produces more [O] and enhances shell formation, thus increasing both \(c_o\) and \((R_p - s)\), as shown in Figs. 6b and 6c, respectively. An increase in the shell thickness affects the capacity fade of the cell, as shown in Fig. 6d. The results obtained in Figs. 5 and 6 can be rationalised by noting that a higher [O]-diffusivity \((D_o)\) allows the [O] produced at the core–shell interface to migrate away towards the particle surface more readily, thereby lowering the [O]-concentration \((c_o)\) at the interface \((s)\). The backwards reaction is thus stifled, which results in an increased net reaction rate \((K_1 - K_2c_o)\). Whenever the forward reaction is favoured, the shell formation itself is favoured, causing higher capacity fade.

Figures 5 and 6 present the influence of varying the magnitude of \(D_o\) and \(K_1\) individually, while keeping the other parameter constant. The effect of both \(D_o\) and \(K_1\) is presented in Fig. 7. Figures 7a and 7b show the contours of cell capacity in \((D_o - K_1)\) plane for initial shell thickness, \(R_p - s\) = 0.01 and 0.08, respectively. For smaller shell thickness, [O]-diffuses out very fast and \(K_1\) dominates the capacity fade as can be observed following the constant capacity lines across \(K_1\) (higher capacity fade due to a relatively smaller change in the values of \(K_1\)) in Fig. 7a which is the reason the amount of capacity fade obtained is high. However, for larger shell thickness, [O]-diffusion becomes the limiting factor, and the amount of capacity fade is low as shown in Fig. 7b. The higher variation in the constant capacity lines is obtained only in the lower \(D_o\) value regions. A larger shell thickness corresponds to higher degradation via LAM and LLI. If the reaction rate \((K_1)\) and [O]-diffusion \((D_o)\) are both high, a higher rate of LAM and LLI is to be expected, as evident from the results obtained in Figs. 7a and 7b.

Figures 5–7 summarize the influence of [O]-diffusion and the reaction kinetics on the capacity fade of a Li-ion cell during the structural changes of NMC811 materials. The net rate, \((K_1 - K_2c_o)\), which governs the structural change reaction of the PE, reveals that if [O]-diffusion is slow relative to the forward reaction rate, then the capacity fade is “diffusion dominated,” but if [O]-diffusion is fast relative to the forward reaction rate, then the capacity fade is “reaction rate dominated.” As the shell thickens, corresponding to a more aged cell, the capacity fade becomes more “diffusion dominated.”
capacity of the cell are: the Li-ion-diffusivity through the shell (\(D_s\)), initial shell thickness (\(R_p - s_i\)), and amount of Li-ions lost during shell formation (\(\phi\)). As expected, a reduction in \(D_s\) and \(\phi\) reduces the capacity of the cell, whereas a larger initial shell thickness (\(R_p - s_i\)) reduces the capacity of the cell significantly. The theoretical formulation presented here captures these dependencies and the corresponding simulation results are presented in Fig. S4 of ESL. Notably, these three parameters are specific for a particular PE material, and their values are relatively easily obtainable from either fundamental material properties or molecular simulation studies. In
contrast, the two interfacial phenomena, i.e. the reaction rate and the [O]-diffusion rate control the phase transition of NMC811 material during charging and lead to two markedly different degradation pathways, as presented in Fig. 7.

Perspective for a higher number of charging cycles.—Due to computation speed, the degradation parameters used to obtain the results presented in Figs. 2–7 are chosen to accelerate the degradation by increasing the shell thickness exaggeratedly within the first cycle. It is known that the growth of the passivation layer happens over potentially thousands of cycles. It was checked that lower values of the degradation parameters, such as D_o and K_1, reproduce similar results as those presented above over the first few cycles. The model predictions presented here aim to reveal the physics of this specific degradation mechanism, and the effects retrieved by the model. These remain valid for the accelerated degradation modelled. Quantitative comparisons with experimental data on degradation and the detailed analysis of the influence of charging-discharging cycles at various operating conditions and remain the subject of future work.

Conclusions

The influence of structural changes of a high nickel cathode material, typified by NMC811, on the degradation of a Li-ion cell have been explored through a comprehensive thermally-coupled, physics-informed continuum scale model, for the first time. The governing equations and boundary conditions of the conventional single-particle model (SPM) are modified to incorporate the disposition of the bulk positive electrode material into a shell layer via the evolution of [O] and a shrinking-core model. [O]-generated at the bulk-passivation layer interface diffuses through the shell and process modelled as zero [O]-concentration at the particle surface. The effect of the diffusion rate of Li-ions and [O] through the shell and the rate of the shell formation reaction are both studied in this model. The model is shown to predict capacity fade due to the loss and the rate of the shell formation reaction are both studied in this model. The notations, $n, V,$ and A denote the outward normal vector, volume, and surface over which the integrations are being carried, respectively. The expression obtained in Eq. A.1 is replaced in Eq. A.2 to obtain,

$$\frac{d}{dt} \int_{PE} (c_p + \phi c) dV = -\int_{(r_o,s)} \mathbf{F}_r \cdot \mathbf{n} dA - g \int_{r_o,s} dA. \tag{A.2}$$

The notations, $n, V,$ and A denote the outward normal vector, volume, and surface over which the integrations are being carried, respectively. The expression obtained in Eq. A.1 is replaced in Eq. A.2 to obtain,

$$\frac{d}{dt} \int_{core} (c_p + \phi c) dV = -\int_{(r_o,s)} \mathbf{F}_r \cdot \mathbf{n} dA + \dot{c}_o \int_{r_o,s} dA. \tag{A.3}$$

The total amount of Li-ions should be conserved. Thus, we can write,

$$\int_{core} (c_{p,t} + \nabla \cdot \mathbf{F}_p) dV + \int_{shell} ((\phi c)_t + \nabla \cdot \mathbf{F}_o) dV = 0. \tag{A.4}$$

Using Reynolds transport theorem (RTT) and divergence theorem we obtain,

$$\frac{d}{dt} \int_{PE} (c_p + \phi c) dV - \int_{(r_o,s)} (\mathbf{v} \cdot \mathbf{n}) c_p dA$$

$$+ \int_{(r_o,s)} (\mathbf{F}_p \cdot \mathbf{n}) dA - \int_{(r_o,s,R_o)} (\mathbf{v} \cdot \mathbf{n}) \phi c_o dA$$

$$+ \int_{(r_o,s,R_o)} (\mathbf{F}_o \cdot \mathbf{n}) dA = 0. \tag{A.5}$$

where v is the velocity of the area element considered for individual surface integration. Equation A.3 is replaced in Eq. A.5 and then rearranged to obtain,

$$\int_{r_o,s} [\dot{c}_o c - \dot{c}_o = \dot{c}_o + \dot{c}_o c + F_o - S]dA = 0. \tag{A.6}$$

Considering Eq. 6 of the main manuscript we can write Eq. A.6 as,

$$(F_o - F_p)|_{r_o,s} + \dot{c}_o (1 - \phi) c_p |_{r_o,s} - \dot{c}_o c = 0, \tag{A.7}$$

which is the exact similar form as presented in Eq. 7 of the main manuscript.

A.2. Derivation steps of Eq. 9.—The total amount of oxygen contained within PE particle and leaving the particle surface should be conserved. Thus,

$$\int_{core} (c_{o,t} + \nabla \cdot \mathbf{F}_o) dV + \int_{shell} (c_{o,t} + \nabla \cdot \mathbf{F}_o) dV = 0. \tag{A.8}$$

where, \mathbf{F}_o is the local mass flux of oxygen in the core. The total amount of [O] can only leave through the particle boundary which we can express as,
\[
\frac{d}{dt} \iiint_{PE} (c_{oc,t} + c_{oi,t}) dV = - \iint_{r=R_p} (\mathbf{F}_c \cdot \mathbf{n}) dA. \tag{A.9}
\]

Using Eqs. A.8 and A.9, RTT, divergence theorem, and following the similar procedure presented in Appendix A.1, we obtain the boundary condition for [O]-diffusion at the core–shell interface as,

\[
E_o |_{r=s} + \dot{s} (c_{oc} - c_{oi}) |_{r=s} = 0. \tag{A.10}
\]

A.3. Derivation steps of Eq. 13.—The rate of generation of [O] following the reaction kinetics of Eq. 12 can be written as,

\[
g = \begin{cases}
 k_1 (c_{moi} - k_2 c_{moi} c_o) & \text{if } c_p < c^* \\
 0 & \text{if } c_p > c^*
\end{cases} \tag{A.11}
\]

Using Eqs. A.1 and A.11 we can write,

\[
\dot{s} = \begin{cases}
 k_1 - k_2 c_o & \text{if } c_p < c^* \\
 0 & \text{if } c_p > c^*
\end{cases} \tag{A.12}
\]

where the redefined reaction rate constants are, \(k_1 = k_1' c_{moi}/c_{oc}\) and \(k_2 = k_2' c_{moi}/c_{oc}\).

Appendix B. Non-Dimensional Equations

The governing equations and boundary conditions are made non-dimensional by setting, \((c_p, c_o, c_{oo}, c_{oc}) = (c_p, c_o, c_{oo}, c_{oc})/c_{p}^{\text{max}}, (c_{ni}, c_{mi}) = (c_n, c_{ii})/c_{n}^{\text{max}}, (\tilde{r}, \tilde{\tau}) = (r_0, s)/R_p, \tilde{r}_n = r_n/R_n, (\tilde{D}_p, \tilde{D}_o, \tilde{D}_n, \tilde{D}_h) = (D_p, D_o, D_n, D_h)/D_p^{\text{ref}}, \tilde{\dot{J}}_p = J_p R_p/D_p^{\text{ref}} c_{p}^{\text{max}}, \tilde{J}_n = J_n R_n/D_n^{\text{ref}} c_{n}^{\text{max}}, \text{ and } \tilde{t} = t D_p^{\text{ref}}/R_p^2\). The local radius \(r\) of the PE and NE is denoted as \(r_p\) and \(r_n\), respectively. We have redefined the dimensional chemical reaction rate constants in non-dimensional form as, \(K_1 = (R_p/D_p^{\text{ref}}) k_1\) and \(K_2 = (R_p/D_p^{\text{ref}}) k_2\). Although the rescaled variables are represented by hats, however, the final form of the variables are shown without the hats, for brevity.

The resulting coupled governing equations [Eqs. 1–3], boundary [Eqs. 4–7 and 9–10] and initial [Eqs. 8 and 11] conditions, and core–shell interface dynamics equation [Eq. 13] for PE can be written as,

\[
r^2_p \phi_{c_{p,t}} - D_p (r^2_p \phi_{c_{p,\eta}})_{r_p} = 0, \tag{B.1}
\]

\[
r^2_p \phi_{c_{o,t}} - D_o (r^2_p \phi_{c_{o,\eta}})_{r_p} = 0, \tag{B.2}
\]

\[
r^2_p c_{p,0} - D_p (r^2_p c_{p,\eta})_{r_p} = 0, \tag{B.3}
\]

\[
c_{p,0} \bigg|_{r_p=s} = c_0 \bigg|_{r_p=s} = 0, \tag{B.4}
\]

\[
c_{p,0} \bigg|_{r_p=0} = c_p \bigg|_{r_p=0} = 0, \tag{B.5}
\]

\[
D_p c_{p,\eta} \bigg|_{r_p=s} - D_o c_{o,\eta} \bigg|_{r_p=s} + \dot{s}((1-\phi)c_{p,\eta} - c_{oc}) = 0. \tag{B.6}
\]

\[
D_o c_{o,\eta} \bigg|_{r_p=s} - \dot{s}(c_{oc} - c_o) \bigg|_{r_p=s} = 0. \tag{B.7}
\]

\[
c_{oc} \bigg|_{r_p=0} = 0, \tag{B.8}
\]

\[
c_{p} \bigg|_{r_p=0} = c_p \bigg|_{r_p=0} = 0. \tag{B.9}
\]

\[
\dot{s} = \begin{cases}
 K_1 - K_2 c_{o} & c_p < c^* \\
 0 & c_p > c^*
\end{cases} \tag{B.10}
\]

The non-dimensional governing equation [Eq. 14] and boundary [Eqs. 15–16] and initial [Eq. 17] conditions for NE are,

\[
\left(\frac{R_n^2}{R_p^2}\right)^2 c_{n,t} - D_n (r^2_n c_{n,\eta})_{r_n} = 0, \tag{B.13}
\]

\[
c_{n,0} \bigg|_{r_n=0} = 0, \tag{B.14}
\]

\[
D_n c_{n,\eta} \bigg|_{r_n=0} + J_n = 0, \tag{B.15}
\]

\[
c_{n} \bigg|_{r_n=0} = c_{ni}. \tag{B.16}
\]

The cell temperature is non-dimensionalised as \(T^* = (T - T_{amb})/T_{ref}\). The dimensional energy balance [Eq. 23], the initial condition [Eq. 24], and temperature dependencies of parameters [Eqs. 25 and 27] are made dimensionless as following,

\[
\dot{\tilde{t}}^* = \frac{R_p^2}{\rho C_p D_{p}^{\text{ref}}} \left[U_{app} T^* (U_p, T(x_{\text{surf}}) - U_{n,T}(x_{\text{surf}})) \right. \tag{B.17}
\]

\[
+ \frac{I_{app}}{T_{ref}} (V_{cell} - U_p + U_n) - hA_k (T^* - T_{amb}^*) \right], \tag{B.18}
\]

\[
D_{t}(T^*) = \exp \left[\frac{E_{d,ib}}{RT_{ref}} \left(1 - \frac{1}{T^*} \right) \right], \tag{B.19}
\]

\[
K_j(T^*)/K_{j,ref} = \exp \left[\frac{E_{a,ib}}{RT_{ref}} \left(1 - \frac{1}{T^*} \right) \right], \tag{B.20}
\]

Appendix C. Mapped Equations

The transformed set of coupled equations [Eqs. B.1–B.12] is derived as,

\[
c_{p,0} - \frac{\dot{\gamma}_s}{s^{\gamma}_c} c_{\gamma,0} - \frac{D_p}{\eta^2 s^{2\gamma}_c} (\eta^2 c_{p,\gamma})_{\eta} = 0, \tag{C.1}
\]

\[
c_{s,0} + \frac{\dot{\gamma}_s}{s-1} c_{\gamma,0} - \frac{D_o}{\eta^2 s^{2\gamma}_c} (\eta^2 c_{o,\gamma})_{\eta} = 0, \tag{C.2}
\]

\[
c_{c,0} + \frac{\dot{\gamma}_s}{s-1} c_{\gamma,0} - \frac{D_o}{\eta^2 s^{2\gamma}_c} (\eta^2 c_{c,\gamma})_{\eta} = 0, \tag{C.3}
\]

\[
c_{p,0} \big|_{\eta=0} = 0, \tag{C.4}
\]

\[
c_{p,0} \big|_{\eta=0} = c_{c,0} \big|_{\eta=0} = 0, \tag{C.5}
\]

\[
D_p (1-\gamma) c_{p,\eta} \bigg|_{\eta=0} - D_o c_{c,\eta} \bigg|_{\eta=0} = 0, \tag{C.6}
\]
13. H. Gabrisch, T. Yi, and R. Yazami, “Surface chemistry and structure of LiNi0.5Co0.2Mn0.3O2 cathode materials for Li-ion batteries.” J. Electrochem. Soc., 164, A1361 (2017).

15. D. Li, H. Li, D. Damilov, L. Guo, J. Zhou, R.-A. Eichy, Y. Yang, and P. H. L. Notten, “Temperature-dependent cycling performance and ageing mechanisms of Li(Ni0.5Mn0.2Co0.3)O2 cathode materials.” J. Power Sources, 185, 54 (2008).

19. D. Li, H. Li, D. Damilov, L. Guo, J. Zhou, R.-A. Eichy, Y. Yang, and P. H. L. Notten, “Temperature-dependent cycling performance and ageing mechanisms of Li(Ni0.5Mn0.2Co0.3)O2 cathode materials.” J. Power Sources, 185, 54 (2008).

References

