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ABSTRACT 

 

Atomic force microscopy (AFM) was used to study mononucleosomes reconstituted from a DNA 

duplex of 353 bp containing the strong 601 octamer positioning sequence, together with recombinant 

human core histone octamers. Three parameters were measured: 1) the length of DNA wrapped around 

the core histones; 2) the number of superhelical turns, calculated from the total angle through which 

the DNA is bent, and 3) the volume of the DNA-histone core. This approach allowed us to define in 

detail the structural diversity of nucleosomes caused by disassembly of the octasome to form 

subnucleosomal structures containing hexasomes, tetrasomes and disomes. At low ionic strength (TE 

buffer) and in the presence of physiological concentrations of monovalent cations, the majority of the 

particles were subnucleosomal, but physiological concentrations of bivalent cations resulted in about 

half of the nucleosomes being canonical octasomes in which the exiting DNA duplexes cross 

orthogonally. The dominance of this last species explains why bivalent but not monovalent cations can 

induce the initial step towards compaction and convergence of neighboring nucleosomes in 

nucleosomal arrays to form the chromatin fiber in the absence of linker histone. The observed 

nucleosome structural diversity may reflect the functional plasticity of nucleosomes under 

physiological conditions. 
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1.   INTRODUCTION 

Eukaryotic genomic DNA exists in a highly compact and organized form called chromatin. For many 

years it was thought that the chromatin in the cell nucleus exists mainly in the form of 30 nm fibrils 

composed of regularly repeated core particles connected by a certain length linker DNA and linker 

histones. Much evidence for such fibers of several structural types has been obtained in vitro [1-3], but 

the evidence for 30-nm fibers in vivo is not overwhelming. The nucleosome fiber in vivo appears to be 

dynamic, existing as an irregularly folded structure subject to Brownian motion and ongoing 

processing [4-7]. 

The mono-nucleosome as the basic structural unit of chromatin [8] is sufficiently stable to 

maintain structures of higher order but it must also ensure the accessibility of the information encoded 

in the DNA, i.e. it behaves as a dynamic structure that can reversibly change its conformation and 

composition. Data showing that the histone octamer can stably package from about 100 to 170 bp of 

DNA has been presented [9-13]. Moreover, more recent findings lead to the conclusion that the 

nucleosome must be considered as a family of particles, which differ not only in the amount of DNA 

wrapped around the core histone proteins but also in the composition of the internal histone core: 

octasomes, hexasomes, tetrasomes, “split” half-nucleosomes, hemisomes, lexosomes, [14-20].  An 

integral feature of chromatin and nucleosomes is their high sensitivity to changes in the environment. 

Studies carried out under even slightly differing conditions are difficult to compare and the ionic 

environment affects both internucleosomal and intranucleosomal interactions [21]. 

Here we investigate the effect of ionic conditions on mononucleosome conformation and its 

structural variants using an analysis of multiple atomic force microscopy (AFM) images to define the 

conformation of the entering and exiting DNA strands from a positioned histone core, all in the 

absence of linker histone. This is not a totally artificial situation because it is well established that in 

the presence of Mg
2+

 ions, despite the absence of linker histone, the 30-nm fiber is readily formed [22, 

23].  

Single nucleosome analysis has allowed us to define the structural diversity of nucleosomes as 

a consequence of the unwrapping of DNA and partial histone octamer dissociation. Under conditions 

of low nucleosome concentration the structural distribution exhibited four distinct major 

subpopulations of nucleosomes, verified to be disomes, tetrasomes, hexasomes and octasomes. Low 

ionic strength and the presence of monovalent cations favored disassembled species, whilst bivalent 

cations shifted the distribution to octasomes, in particular a form in which the DNA duplexes exit the 

nucleosome orthogonally. 
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2.   MATERIALS and METHODS 

2.1.   DNA, histones and nucleosome reconstitution 

A DNA fragment, 353 bp in length, containing the strong 601 nucleosome positioning sequence was 

amplified by the polymerase chain reaction using plasmid pGem-3Z-601 (derived from Widom’s 

laboratory) as a template [24]. The primers were designed such that the dyad symmetry nucleotide (S0 

site) was located asymmetrically: 200 bp from one end, correspondingly 152 bp from the other end. 

Core histone octamer refolding and nucleosome reconstitution were performed according to protocols 

from the Luger laboratory [25] using full-length human recombinant histones purchased from New 

England Biolabs. In brief, H2A, H2B, H3 and H4 histones were transferred to unfolding buffer (6M 

guanidinium hydrochloride, 20 mM Tris-HCl, pH 7.5, 5 mM DTT), mixed in equimolar ratios at a 

final protein concentration of ~1 mg/ml. The histone mixture was then stepwise dialyzed using Slide-

A-Lyzer 7K dialysis cassettes (Pierce) against refolding buffer (2M NaCl, 10 mM Tris-HCl, pH 7.5, 1 

mM EDTA, 5 mM 2-mercaptoethanol) at 4
0 

C. After concentration to 5 mg/ml, the products were 

loaded onto a Superdex 200 PG column (4 mm x 30 mm) equilibrated with refolding buffer. 

Chromatography was performed at 4
0 

C, the flow rate was 0.04 ml/min, fraction volumes 75 l. 

Fractions containing histone octamers were pooled and kept on ice at ~ 2 mg/ml before use. For 

nucleosome reconstitutions, a micro-scale stepwise dilution protocol was used [25]. A molar ratio of 

1/1 for DNA to octamers with a Slide-A-Lyzer Mini Dialysis Unit MWCO 3500 (Pierce) was used in 

overnight dialysis against buffer containing 0.2 M NaCl followed by a 2 hr dialysis against TE buffer. 

After determining concentrations the samples were kept on ice at a DNA concentration of ~75 g/ml 

until used. 

 

2.2.   Surface preparation, sample preparation and AFM 

Nucleosomes were immobilized on the surface of aminopropyl-triethoxysilatrane APS-treated mica 

[26]. The nucleosome samples were diluted to a final DNA concentration of 0.5 g/ml (~2 nM) with 

10 mM Tris-HCl buffer, pH 7.5, together with 1 mM EDTA, or NaCl, or MgCl2 at different 

concentrations and then incubated for 5 min at room temperature (RT). 5 μl droplets were deposited 

onto the mica surface, left for 3 min at RT and the surfaces then rinsed with Milli-Q Ultrapure water, 

dried in an argon flow and kept under vacuum. The samples were scanned in tapping mode in air at RT 

using a Nanoscope III system (Veeco, Santa Barbara, CA, USA) using silicon probes with a spring 

constant of 42 N/m and a resonant frequency of 320 kHz. The scanning rate was 1.7 Hz over scan 

areas of 1 μm and images were captured in a 512 x 512 pixel format and flattened before analyses. 

Measurements of contour length, angle and cross-section analysis were performed using Femtoscan 

software (Advanced Technologies Center, Moscow, Russia). 
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2.3.   Nucleosome image analysis 

AFM images of nucleosomes were used to analyze wrapped DNA length (Lw), the volume of the 

DNA-protein core (V), and the number of DNA superhelical turns around the histone core (Nt). A 

typical field is shown in Figure S1. The length of each arm was measured from the end at half DNA 

height up to the perpendicular line crossing the nucleosome core through its centroid (see Fig. 1). 

Wrapped DNA length, Lw, was calculated from the equation: Lw = Lt – L1 –L2, where Lt is the 

template DNA length and L1, L2 the measured DNA arm lengths.  

  

 

The volume of the nucleosome core, i.e. excluding the unwrapped DNA ‘tails’, was calculated by 

treating the particle as a segment of a sphere [27]: V = h/6 × (3r
2
 + h

2
), where h is the height and r the 

radius.  

Fig. 2 shows the approach for calculating r, the angle through which the DNA is bent and for 

determining the number of DNA turns (Nt) from the angle measured between the exiting DNA arms 

(m). Due to the fact that the m value is cyclically repeated for variants of partially assembled and 

folded nucleosomes, the images were sorted by type using the Lw value and an appropriate formula 

applied for r calculation: 

Type 1: r = 180  m,  if  Lw < 41.7 bp,  

Type 2: r = 180 + m,  if  41.7 bp  Lw < 83.4 bp, 

Type 3: r = 540  m,  if  83.4 bp  Lw < 125.1 bp, 

Type 4: r = 540 + m,  if 125.1 bp  Lw  

The number of DNA turns (Nt) was calculated from the equation:   Nt = r /360 

 

Fig. 1. A. Schematic representation of DNA arm 
length measurement. The green circle is the 
histone core. Blue solid lines represent the real 
DNA contour. Black dashed lines represent the 
observed nucleosome contour in AFM images. 
L1, L2 are DNA arm lengths. The length of the 
each arm was measured from its end (at half of 
DNA height) up to the perpendicular line 
crossing the nucleosome core through its 
centroid. B is an AFM image corresponding to 
the nucleosome drawn in A. 
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Fig. 2. Nucleosome variants and their characteristics obtained from analysis of AFM images. The top 
row gives examples of nucleosome images corresponding to the models in the second row and their 
characteristics arranged in the table columns below. Curved arrows in the models indicate the total 
DNA bending angle (r) relative to unbent DNA template. Columns give corresponding values of 
measured angle (m), measured wrapped DNA length (Lw), the calculated bending angles r, the 
calculated number of superhelical turns (Nt).  Rows 3 and 4 give information for type-dependent 
calculations. 
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3.   RESULTS 

Nucleosomes were reconstituted using a 353-bp duplex containing the 601 positioning sequence 

together with recombinant core histone octamers, i.e. lacking post-translational modifications. The 

homogeneity of the nucleosome samples was confirmed by electrophoresis (Fig. 3). They were spread 

on mica films and 

 

multiple images of both naked DNA and nucleosomes collected and analyzed. To estimate the 

experimental variation, the lengths of 316 free DNA molecules were measured, showing a Gaussian 

distribution centered at 120.8 ± 4.0 nm (mean ± SD); this corresponds to B-form DNA having a 10-bp 

repeat of 3.4 nm (see Figure S2). For nucleosomes, three measurements were made of a total of 803 

images: 1) the lengths of the DNA arms (see Fig. 1 for an explanation of this measurement), 2) the 

angle between the two exiting duplexes and 3) the volume of the histone-DNA core. The lengths of the 

DNA arms and the angle between the two exiting duplexes were used to calculate the length of the 

DNA wrapped around the histone core (Lw) and the number of superhelical turns (Nt) – see Materials 

and Methods. These two quantities are, of course, related in that Lw/Nt represents the length of one 

superhelical turn. The data fit to a Gaussian distribution about a value of 83.4 ± 6.2 bp (Mean ± SD, n 

= 172), which is taken as the wrapped length in one superhelical turn (see Figure S3). 

The approach used for the calculations is shown in (Fig. 2). Errors were estimated for Lw, Nt 

and V of nucleosome samples obtained from 5 independent measurements of 3 different images of the 

3 same objects, resulting in 15 values of each parameter per object. All 9 data sets (for 3 parameters of 

3 objects) were found to be normally distributed using the Shapiro-Wilk W-test for normality and the 

relative errors were calculated as the ratios of the half-widths of 95% confidence intervals to the object 

mean value. The relative errors for each parameter were: 4%, 12% and 20% for Nt, Lw and V, 

respectively. 

 

Fig. 3: A: Electrophoresis of template DNA: 
ethidium bromide stained 1.5 % agarose gel 
electrophoresis in 0.5 x TBE of the 353-bp 
DNA fragment (track D) containing the 
nucleosome-positioning sequence.  
B: ethidium bromide stained 6% 
polyacrylamide gel electrophoresis in 0.5 x 
TBE of a reconstituted nucleosome sample. 
The labels d, n, and a correspond to free 
DNA, the mononucleosome and a higher-
molecular weight structure [25], respectively. 
M1 and M2 are molecular weight markers. 
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Fig. 4. Value distributions of wrapped nucleosome DNA length (Lw), the number of DNA superhelical 
turns (Nt), and the nucleosome volume in TE buffer (n = 215); in 10 mM Tris-HCl, pH 7,8 + 140 mM 
NaCl (n = 270) and in 10 mM Tris-HCl, pH 7,8 + 4 mM MgCl2 (n = 318). 

 
Fig. 4 presents distributions of Lw, Nt and V. The three distributions for Nt clearly show four separate 

peaks centered at about 0.35, 0.85, 1.3 and 1.8 superhelical turns, though such peaks can only partially 

be discerned in the Lw and V distributions, a difference clearly stemming from the greater accuracy of 

the Nt measurements. Comparing the distributions in different ionic environments shows that whereas 

the addition of 140 mM NaCl to the TE buffer results in only a slight redistribution of particle species, 

the presence of 4 mM Mg
2+

 drives many nucleosomes to increased values of Lw, Nt and V.  
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In order to better define particle distributions, Fig. 5 presents 2D scatter plots of wrapped 

nucleosome DNA length (Lw) against the number of DNA superhelical turns (Nt). As expected, a 

good linear correlation between these two, linked, parameters is seen, despite the inevitable 

observational scatter. The existence of four sub-groups of particles is more apparent in Fig. 5 than in 

Fig. 4 and to emphasize this more clearly, the data are also plotted as density profiles on the right hand 

side of Fig. 5.  This shows that the main peaks are centered at: 1) Nt = 1.75, Lw = 147 bp; 2) Nt = 1.25, 

Lw = 106 bp; 3) Nt = 0.85, Lw = 72 bp; 4) Nt = 0.40, Lw = 39 bp. 
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Fig. 5. Plots of wrapped nucleosome DNA length (Lw) against the number of DNA superhelical turns 
(Nt) in TE buffer (n = 215); in 10 mM Tris-HCl, pH 7,8 + 140 mM NaCl (n = 270) and in 10 mM Tris-
HCl, pH 7,8 + 4 mM MgCl2 (n = 318). Left hand panels are scatter plots, right hand panels are dot 
density plots. 
 

To determine what these four populations represent, i.e. to what sub-nucleosomal species they should 

be assigned, Nt values were plotted against the volumes of the particles – two quite independent 

parameters – and this is shown in Fig. 6 - that also displays density plots in the right hand panels.  
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Fig. 6. Plots of nucleosome volume (V) against the number of DNA superhelical turns (Nt) in TE 
buffer (n = 215); in 10 mM Tris-HCl, pH 7,8 + 140 mM NaCl (n = 270) and in 10 mM Tris-HCl, pH 
7,8 + 4 mM MgCl2 (n = 318). Left hand panels are scatter plots and the red dots represent the relative 
volumes, V, of octasome, hexasome, tetrasome and disome, as given in Table 1. The blue triangles 
represent the predicted relative volumes of particles having the same Nt values but retaining the full 
complement of octameric core histones.  The right hand panels are dot density plots, as in Fig. 5. 

 

There is inevitably a greater scatter in Fig. 6 than in Fig. 5 in consequence of the greater error 

in the volume measurements but the four principal components remain clearly visible. The particles 

with lower Nt (Lw) values, i.e. those from which significant lengths of DNA has unwrapped, are likely 

to represent species that have also lost histones but is this hypothesis consistent with their measured 

volumes? The expected volumes, V, of three sub-nucleosomal species, (hexasome, tetrasome and 

disome), were predicted using the Nt = 1.75 octasome particle (mass 204 kDa, measured volume 180 

nm
3) as calibrant, by calculating their volume fractions, Vf, from their masses, i.e. assuming uniform 

density. Bearing in mind that only the volume of the central particle is measured, (i.e. excluding the 

extended DNA arms), their masses represent the sum of the histones and that of the remaining 

wrapped DNA, given by the mean values of Lw observed for the given subpopulation, (see Table 1). 
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Table 1. Fractional volumes (Vf) of subnucleosomal particles calculated from molecular weights  
and normalised relative to an octasome volume of 1, experimentally measured as 180 nm

3
. 

* Mean values of Lw observed for the given subpopulation. 
 

Particle Composition Mw, kDa Vf, fraction V, nm
3
 

Dimer H2A/H2B 27,8 0,14 24,5 

Tetramer 2(H3/H4) 53,0 0,26 46,8 

Hexamer 2(H3/H4) H2A/H2B 80,8 0,40 71,3 

Octamer 2(H3/H4) 2(H2A/H2B) 108,6 0,53 95,8 

DNA 147 bp 95,4 0,47 84,2 

Octasome Octamer + 147 bp DNA 204,0 1,00 180 

Hexasome Hexamer + 106 bp* DNA 149,6 0,73 131,9 

Tetrasome Tetramer + 72 bp* DNA 99,7 0,49 88,0 

Disome H3/H4 Dimer + 39 bp* DNA 51,8 0,25 45,7 

 

Fig. 6 plots these (relative) volumes against their Nt values for the 4 principal components as 

red dots and these clearly coincide with the four centers of local particle density, strongly implying 

that they represent subnucleosomal species containing dimers, tetramers, hexamers and octamers of 

histones. 

Another possibility to be considered, and by way of control, is that partial unwrapping of DNA 

in particles with lower Nt (Lw) values is not accompanied by histone loss. In that case, the reduced 

volume is a consequence only of DNA loss. Calculating the predicted volumes by the above method 

inevitably yields volumes greater than for the histone-depleted particles and these are plotted as blue 

triangles in Fig. 6: clearly, they do not coincide with the points of high particle density. We conclude 

that the species centered at Nt = 1.25, 0.85 and 0.40 truly represent partially unwrapped and depleted 

particles containing hexamers, tetramers and dimers of core histones. The specific assignment of 

partially assembled nucleosome populations was initially based on matching Lw and V parameters 

obtained from atomistic structures of sub-nucleosome particles [28,29].  

From Figs. 5 and 6 it can be seen that the local centers of subnucleosomal particle distributions 

do not significantly change position over the three tested ionic conditions, as expected for such defined 

species, but their relative amounts change considerably. Addition of 140 mM NaCl to Tris buffer has 

only a slight effect on the hexamer to tetramer ratio, leaving the amounts of dimer and octamer species 

quite low. However, addition of 4 mM Mg
2+

 leads to almost complete depletion of the disome and a 

large increase in the octasome population: the hexasome population also increases at the expense of 

the tetrasome. 

In order to better monitor the ionic strength dependence of the distribution of subnucleosomal 

species the amount of NaCl added to Tris buffer was varied, as was the concentration of Mg
2+

. The 

results are shown in Fig. 7 that plots the frequency of octasome occurrence against the ionic conditions. 
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It is seen that whereas addition of Na
+
 has very little effect on octasome formation, the divalent cation 

Mg
2+

 has a striking effect, peaking at about 4 mM. The drop-off at even higher concentrations of Mg
2+

 

probably results from release of histones, i.e. reversion to hexamer etc. 
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Fig. 7. Relative frequencies of octasomes in 10 mM Tris-HCl, pH 7,8 with different concentrations of 
MgCl2 (left) or NaCl (right). 1, 2, 3 – the data of three independent experiments, each of which 
represents the results of a separate nucleosome reconstitution and sample preparation. Each point 
represents the analysis of more than a hundred individual nucleosomes.  

 

The distribution of nucleosomal species was also tested in the presence of other monovalent 

and divalent cations: in 1×TBE buffer and in 10 mM Tris-HCl, pH 7.8 + 140 mM KCl, dissociation 

was similar to that in TE or NaCl buffer, while 4 mM Ca
++

 had a somewhat stronger stabilizing effect 

as compared to 4 mM Mg
++

 (data not shown). 

 

4.   DISCUSSION 

It is well known that the nucleosomal particle is dynamic and can dissociate at low concentrations [30-

32]: the functional importance of H2A/H2B dimer loss being first noted in 1983 [33]. AFM sample 

preparation requires dilution of nucleosomes down to nanomolar concentrations that result in partial 

dissociation of octasomes. The ability of Mg
2+

 to drive folding at the nucleosomal level is especially 

clear from the present observations. 

The effect of Mg
2+

 on mononucleosomes was documented previously [34].  Using electron 

microscope images of reconstituted linker histone-depleted mononucleosomes it was found that the 

number of wrapped DNA turns, averaged for the entire measured set, decreased from 1.60±0.17 

(134±14 bp) in buffer containing 5 mM Mg
2+

 to 1.52±0.18 (128±15 bp) in buffer without Mg
2+

, 

concluding that this change represented unwrapping of ~10-bp at each end of the nucleosome. They 

surmised that this resulted from increasing electrostatic repulsion between the two DNA arms on Mg
2+

 

removal. These authors did not however observe a full range of dissociated particles as seen here and 
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most particularly they did not observe nucleosomal octamers with the exiting DNA strands crossing 

each other at right angles (Nt = 1.75), as seen here in abundance between 1 and 16 mM Mg
2+

. 

It can be seen from the distributions in Figs. 5 and 6 that the species with Nt = 1.5, in which the 

two exiting DNA duplexes emerge parallel to each other, is very rarely observed under all ionic 

conditions. The addition of Mg
2+

 leads directly to the ‘crossed linker’ conformation. It follows that 

Mg
2+

 is able to directly facilitate the orthogonal crossing of the two exiting duplexes. It is well known 

that divalent cations bind tightly to the DNA duplex and, for example, stabilize it against thermal 

melting. The simplest assumption is therefore that the Mg
2+

 ions provide sufficient charge 

neutralization of phosphate groups to facilitate DNA compaction and permit crossing of the two 

duplexes as they exit the nucleosome.  

The finding that Mg
2+

 is able to stabilize the Nt = 1.75 ‘crossed linker’ conformation is directly 

relevant to the observation that – in the absence of linker histone – the 30 nm nucleosomal fibre readily 

forms in the presence of divalent cations [22,23]. The linker histone globular domain has long been 

assumed to lie close to the dyad near where the DNA leaves the nucleosome, thereby defining their 

‘leaving angles’ and controlling the conformation of the linker DNA in the fibre. This model has 

recently been substantiated by the crystal structure of a 167 bp chromatosome [35] showing a GH5 

domain located directly on-axis, making contacts with the two exiting duplexes and with the central 

gyre. This location brings together the exiting linker DNAs, in the manner seen in the AFM images. 

In the context of such a model it was unclear therefore how the fibre could form in the absence 

of linker histone, in particular bearing in mind that in EM visualizations of linker histone depleted 

nucleosomes the exiting duplexes are oriented randomly [36]. It is now apparent that with sufficient 

divalent cation the exit angles of the DNA are stabilized and the directionality of the linker DNA 

thereby defined: this could allow formation of the 30 nm fibre. 

The stepwise disruption of the nucleosome in the manner found here has been observed with in 

vitro assembled arrays using micromechanical stretching experiments. For example, using a tandem 

array of 17 nucleosomes, forces less than 20 pN led to continuous unwrapping of 76 bp (about one 

superhelical turn) that was attributed to loss of both H2A/H2B dimers, while increased forces 

of >20pN led to cooperative loss of a further 82 bp, attributed to unwinding the central superhelical 

turn with loss of H3/H4 tetramers [37]. The similar stepwise disruption of a single 601-positioned 

nucleosome was verified to have three regions of strong interactions: the strongest at the dyad (S0 site) 

and the other two ~±40 bp from the dyad [38]. Our experimental data demonstrate similar DNA 

unwrapping with about 40 bp steps between averaged Lw values of the major observed subpopulations: 

147, 106 and 72 and 39 bp, as seen in Fig. 5.  

The use of such stretching techniques with chromatin samples has been reviewed by Bednar 

and Dimitrov [21] who noted that that nucleosome conformations are extremely sensitive to 

environmental conditions and studies carried out under even slightly different conditions cannot be 
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compared directly.  Nucleosome stability was therefore explored here over an extensive range of 

concentrations, in particular at physiological conditions, taken to be 4-6 mM for Ca
2+

and 2-4 mM for 

Mg
2+

 in the interphase cell nucleus [39].  Fig. 7 shows that Na
+
 concentrations in the range from 8 to 

140 mM have no significant effect on the relative frequency with which octasomes are observed in our 

experiment and this does not exceed 5-10%. In contrast, divalent cations stabilize octasomes and the 

‘crossed linker’ conformation: the effective range for half maximal frequency of octasome formation 

extends from 0.25 up to 64 mM with a maximum at about 4-6 mM Mg
2+

. This range is similar to that 

intrinsic for nucleosome oligomerization and precipitation, i.e. for internucleosomal interactions [22, 

23, 40-42]. Since the present data indicate that the ‘crossed linker’ conformation is maximized at about 

4 mM Mg
2+

, this suggests that it represents the basis for the inter-nucleosomal interactions that lead to 

formation of the 30 nm fibre. 

Our principal conclusion is therefore that divalent cations generate the intra-nucleosomal 

crossing-over that provides the initial step towards compaction and convergence of neighboring 

nucleosomes in the formation of the chromatin fiber. 
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Figure and Table Captions 

Fig. 1. A. Schematic representation of DNA arm length measurement. The green circle is the histone 
core. Blue solid lines represent the real DNA contour. Black dashed lines represent the observed 
nucleosome contour in AFM images. L1, L2 are DNA arm lengths. The length of the each arm was 
measured from its end (at half of DNA height) up to the perpendicular line crossing the nucleosome 
core through its centroid. B is an AFM image corresponding to the nucleosome drawn in A. 
 

Fig. 2. Nucleosome variants and their characteristics obtained from analysis of AFM images. The top 
row gives examples of nucleosome images corresponding to the models in the second row and their 
characteristics arranged in the table columns below. Curved arrows in the models indicate the total 
DNA bending angle (r) relative to unbent DNA template. Columns give corresponding values of 
measured angle (m), measured wrapped DNA length (Lw), the calculated bending angles r, the 
calculated number of superhelical turns (Nt).  Rows 3 and 4 give information for type-dependent 
calculations. 
 

Fig. 3: A: Electrophoresis of template DNA: ethidium bromide stained 1.5 % agarose gel 
electrophoresis in 0.5 x TBE of the 353-bp DNA fragment (track D) containing the nucleosome-
positioning sequence. B: ethidium bromide stained 6% polyacrylamide gel electrophoresis in 0.5 x 
TBE of a reconstituted nucleosome sample. The labels d, n, and a correspond to free DNA, the 
mononucleosome and a higher-molecular weight structure [25], respectively. M1 and M2 are 
molecular weight markers. 
 

Fig. 4. Value distributions of wrapped nucleosome DNA length (Lw), the number of DNA superhelical 
turns (Nt), and the nucleosome volume in TE buffer (n = 215); in 10 mM Tris-HCl, pH 7,8 + 140 mM 
NaCl (n = 270) and in 10 mM Tris-HCl, pH 7,8 + 4 mM MgCl2 (n = 318). 
 

Fig. 5. Plots of wrapped nucleosome DNA length (Lw) against number of DNA superhelical turns (Nt) 
in TE buffer (n = 215); in 10 mM Tris-HCl, pH 7,8 + 140 mM NaCl (n = 270) and in 10 mM Tris-HCl, 
pH 7,8 + 4 mM MgCl2 (n = 318). Left hand panels are scatter plots, right hand panels are dot density 
plots. 
 

Fig. 6. Plots of nucleosome volume (V) against number of DNA superhelical turns (Nt) in TE buffer (n 
= 215); in 10 mM Tris-HCl, pH 7,8 + 140 mM NaCl (n = 270) and in 10 mM Tris-HCl, pH 7,8 + 4 
mM MgCl2 (n = 318). Left hand panels are scatter plots and the red dots represent the relative volumes, 
V, of octasome, hexasome, tetrasome and disome, as given in Table 1. The blue triangles represent the 
predicted relative volumes of particles having the same Nt values but retaining the full complement of 
octameric core histones.  The right hand panels are dot density plots, as in Fig. 5. 
 

Fig. 7. Relative frequencies of octasomes in 10 mM Tris-HCl, pH 7,8 with different concentrations of 
MgCl2 (left) or NaCl (right). 1, 2, 3 – the data of three independent experiments, each of which 
represents the results of a separate nucleosome reconstitution and sample preparation. Each point 
represents the analysis of more than a hundred individual nucleosomes.  
 

 

 

Table 1. Fractional volumes (Vf) of subnucleosomal particles calculated from molecular weights  
and normalised relative to an octasome volume of 1, experimentally measured as 180 nm

3
. 

* Mean values of Lw observed for the given subpopulation. 
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Supplementary Fig. S1. Typical AFM field obtained in TE plus 4 mM Mg
2+

. Vertical arrows 
designate octasomes with Nt > 1.5 superhelical turns and Lw > 125 bp and having crossed DNA 
duplexes at the entry/exit point of the nucleosome. Horizontal arrows designate other nucleosome and 
sub-nucleosome conformations having Nt ≤ 1.5 superhelical turns and Lw ≤ 125 bp. 
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Supplementary Fig. S2. Distribution of free 353 bp template DNA molecules (n=316) with a 
Gaussian fit having a center at 120.8 ± 4.0 nm (mean ± SD). This implies a base pair repeat of 
1208/353 = 3.42 A, i.e. B-form DNA. 
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Supplementary Fig.S3.  Distribution of Lw/Nt values for octasomes (n = 172) with a Gaussian fit 
centred on 83.4 ± 6.2 bp (Mean ± SD) which represents the number of base pairs per superhelical turn. 
The value of Nt was calculated from the angle between the two exiting DNA strands (m) using the 
equation: Nt = (540º +m)/360º.  Lw was determined by subtracting the summed length of the two 
arms (L1 + L2) from the total DNA length, Lt. 
 


