Under-Enumeration, Inconsistency and Bias in the US Manufacturing Census 1860-1880:

Case Studies from the American Manufacturing Belt

Richard G. Healey

Department of Geography, University of Portsmouth

Buckingham Building, Lion Terrace, Portsmouth, PO1 3HE, UK

Email: richard.healey@port.ac.uk

URL: https://mc.manuscriptcentral.com/jhistmeth E-mail: hacker@umn.edu, kenms@umich.edu
Abstract

A new typology of major types of enumeration and tabulation errors found in the manuscript schedules and the published reports of the US Manufacturing Census 1860-1880 is proposed. This is based on a review of historical and contemporary assessments of census accuracy and additional new findings. Detailed cases studies of different manufacturing sectors in the rapidly growing city of Cleveland, OH, including railroad shops, transportation-related manufacturing and oil refining are undertaken using non-census sources, as worked examples of census reporting problems, and comparisons are provided with cities in surrounding states. Significant under-enumeration, bias towards small companies and inconsistent reporting, both within and between census years emerges as the norm rather than the worst case scenario. The manufacturing census is found to be unsuitable for use in quantitative studies without extensive additional corroborating evidence of accuracy.

Keywords: U.S. Manufacturing Census; Under-Enumeration; American Manufacturing Belt; Railroads; Statistical Analysis

Acknowledgements

The author would like to thank the referees for their constructive and insightful comments on the manuscript.
Introduction

Data derived from the 19th century manufacturing censuses of the United States have become a mainstay of quantitative studies of industrial development in historical geography and urban and economic history (e.g. Atack 1987; Klein and Crafts 2011; Meyer 1989, 1990; Niemi 1974). Within the period, the census years 1860-1880 have proved to be especially significant, because the published census volumes contain classified tables of manufacturing activity by county across all states (U. S. Census Office 1865, 1872, 1883a). More limited or selective tabulations (e.g. by major cities) can be found in earlier and later census publications (e.g. U. S. Census Office 1854, 1895a). The potential value of the published reports for research purposes has been further enhanced by the careful work of Bateman, Weiss and Atack (n.d.) to construct a large sample of industrial concerns from the original manuscript manufacturing census schedules for the years 1850-1880. The digital files for the sample records are publicly accessible, in conjunction with the necessary code tables.

The relative accessibility of these datasets, in paper or digital form has therefore added to their allure as the basis for a variety of quantitative studies ranging from the use of locational quotients to sophisticated panel regression models (e.g. Kim 1995, 1999; Meyer 1983). While these studies have provided a wide range of interesting insights into processes of industrial development, the impressive rigour of the analytical approaches adopted has not, in general, been matched by an equally rigorous assessment of the quality of data on which the results are based. Formerly, when data processing limitations restricted most studies to perhaps an individual industry or a particular urban area, such considerations tended to be masked by more general questions about the wider applicability of findings from specific case studies (e.g. Walkowitz 1978). With the growing availability of large digital census and administrative boundary datasets for multiple time periods, such as those from NHGIS, however, the possibilities for much broader scale analyses have expanded considerably.
(Minnesota Population Center 2004). Under these circumstances, it is essential to have a
detailed understanding of potential variability in data quality over time and across space.

It may be argued that such problems of data quality are implicit in all historical data
sources and are well understood by users of such data. So they do not present an impediment
to the use of census datasets, which have the advantage that they are based on systematic and
largely comprehensive enumeration of manufacturing establishments, and hence are the best
available sources of information on 19th century economic development. This would be a
defensible position, if indeed all the various sources of possible error had been examined and
found to be limited in size and broadly consistent across the different censuses.

Unfortunately, no such checks appear to have been made and the literature on manufacturing
census data errors is very small, with the partial exception of Walsh (1970), and Atack and
Bateman (1999). Inwood (1995) provides a valuable comparison, in terms of the Canadian
manufacturing census. This limited literature is surprising, given, for example, the lengthy
treatise in the published 1870 manufacturing census on the shortcomings in different aspects
of the enumeration (U. S. Census Office 1872, 371f.), which should be required reading for
all students of 19th century US industrialisation.

This study begins to remedy the lack of checking for problems and inconsistencies by
providing a more systematic examination of a wide range of potential sources of error in the
manufacturing census. This will include discussion of the specific problems identified in the
1870 Census Office report. An attempt will then be made to assess the numerical
significance and wider implications of some of these classes of error. This will be undertaken
using several detailed case studies from Ohio and adjacent states in the American
Manufacturing Belt (AMB) (De Geer 1927), since these and similar areas have attracted
particular attention from researchers who have made extensive use of the manufacturing
census. These case studies will utilise non-census data sources for comparative purposes. It
is also recognised that there may be other classes of reporting problem specific to different parts of the country, such as the ante-bellum South or the pioneer West, but space restrictions necessarily limit the discussion to the AMB, because of the detailed nature of the analysis undertaken.

There are two main dimensions to the investigation of enumeration errors and reporting problems in the manufacturing census. The first is to distinguish within-census from between-census problems, while remembering that even within a single census, enumeration was conducted at a large number of geographical locations approximately simultaneously, by different groups of census employees, of varying enthusiasm, knowledge and experience. The second is to separate problems arising during the original ‘door-to-door’ enumeration, recorded on the manuscript schedules, from those attributable to the subsequent clerical processing of these schedules, to generate the categorised summary tabulations published by the Census Office for states, counties and in many cases, major cities. These two main problem dimensions are summarised in Tables 1 and 2 respectively and the detailed content of these tables will be discussed further below.

Although the existing literature provides some qualitative appreciation of the problems faced by enumerators of manufacturing establishments, the possible quantitative implications are somewhat less clear. Also, there is very little in the way of surviving documentation about how the manuscript schedules were processed into the published tabulations, and what steps were or were not taken to ensure consistency in reporting both within and between censuses. Therefore possible problems in the later stages of the process may have to be identified or inferred either from an analysis of the printed tabulations themselves, or comparison of these tabulations with other non-census data sources. Given the geographical scale of the census data collection operation, over a restricted time period for each census, in the absence of modern-day information management tools, the scope for
many different types of error to enter into the numerous stages of the process between the
enumerator’s visit and the printed tabulation is very easy to envisage.

Within-Census Problems

The Enumeration Process

Table 1 summarises the main types of both enumeration and tabulation related
problems that can be identified. Many, but not all of the possible enumeration issues were
originally detailed by Superintendent Francis Walker (U. S. Census Office 1872, 371f.), as
can be seen from the first column in the table. A first group of problems derived from the
fact that the Manufacturing Census was considered the poor relation of the Population Census
and the resources of time and money devoted to it were deemed inadequate to the
requirements of the task. In particular, the payment for each firm enumerated had not
increased since 1850 and was set at a mere 15 cents. This was less than an hour’s pay for a
manual labourer at the time, hardly a sum likely to encourage accurate and comprehensive
prosecution of the required duties. This was confirmed by subsequent Census Office
investigations which found ‘not a few’ cases of unacceptable performance, where under-
enumeration of firms exceeded 50% and the level of negligence overall was considered great
enough to ‘seriously affect the results of the census’ (U. S. Census Office 1872, 372).

One aspect of under-enumeration that is not properly addressed by Walker is whether
there were other types of more general bias affecting multiple sectors or perhaps urban more
than rural areas? For example, Stuart made specific reference to the refusal or failure of
some of the largest firms in the ship-building, sugar refining, paper milling and other sectors
to furnish information for the 1890 census, though this was believed to be no worse a
problem than in 1880. This suggests the possible existence of a systematic company size
bias, although no individual firms were named (Stuart 1898, 624). If enumeration was not
consistent in the level of coverage across sectors, locations and size classes, and the extent of this inconsistency could affect data availability for 50% or more of manufacturing concerns, judging by Walker’s figures, then the implications for use of the original manufacturing census schedules are potentially very significant. It is therefore surprising that these questions are not really considered, either by Walsh (1970) or Atack and Bateman (1999). In the latter case, assiduous attention is given to explaining the methodology for creating the samples from the extant manuscript schedules, but the potential statistical effects of varying undercounts or biases in the contents of the schedules themselves is not examined, though any biases will necessarily be reflected, or even magnified, in the samples, however comprehensive they may appear to be. For example, if there is systematic undercounting of larger firms in specific sectors, then analyses relating to the existence of scale economies in those sectors, based on sample data, could easily produce results of unknown validity, since the actual form of the relationship between costs and outputs, whether linear or nonlinear, cannot be reliably determined from a biased subset of the firms involved.

A second group of enumeration problems derived not from negligence, but from difficulties in handling more complex forms of company organisation, where there might be multiple plant locations and/or a geographical separation between the Head Office and the site of manufacturing activity. This raised not only the possibility of non-enumeration, where enumerators in multiple locations all assumed their colleagues elsewhere were reporting on the entire concern, but also double-counting, if all enumerators involved recorded information for the same firm on multiple schedules. Walker mentions the first of these reporting scenarios, but not the second and clearly other partial variants can also be envisaged. Another specifically geographical implication of such difficulties could be the inflation of employment/capital invested figures for one county, by aggregate head office reporting of operations, some of which were located in other counties. An excellent example
of the complexities that could arise in these circumstances is provided by the Pittsburgh and Lake Angeline Iron Company, which had its head office in Cleveland, though its iron ore mines were in Marquette County, Michigan (Swineford 1876, 206). It is reported as a single concern in the 1870 manuscript manufacturing census schedule for Cuyahoga County, OH with 175 employees and a capital of $386,000. However, it does not appear in the printed manufacturing census tabulation. Instead, it was transferred to the mining tabulation, which appears elsewhere in the printed 1870 census volumes (U.S. Census Office 1872, 783), to give the false information that iron ore mining was being carried on in Cuyahoga county, which was not the case. However, the company’s mines in Michigan also appear in the manuscript schedules for that state, but as two separate entries, totalling 180 employees and a capital of $300,000. As in the Ohio case, the entries were transferred to the mining tabulation, but as two ‘establishments’ not one (all the schedule entries for iron ore mining and the tabulation can be successfully reconciled in this case to demonstrate this point unambiguously). This example indicates that there is not necessarily a correspondence between the manufacturing schedules and the printed tabulations, double counting with locational implications could easily arise and within the double counting, the reporting itself could be inconsistent.

It should also be noted that the instructions to enumerators were not being followed in such cases. These instructions stated clearly, that ‘when large manufacturing corporations are part in one subdivision and part in another, they should be reported in that subdivision where the office is’ (U.S. Census Office 1870b, 20). Adherence to this instruction would necessarily have reduced the geographical accuracy of reporting even if double-counting was avoided.

The third group of problems relate to inaccurate or inconsistent reporting of the information required by the census, pertaining to the value of outputs and the levels of capital...
and labour inputs. The $500 reporting threshold was designed to capture virtually all establishments that occupied, at a minimum, ‘the entire labor of one able-bodied artisan … at the present prices of labor’ (U.S. Census Office 1870b, 20). Unfortunately, the threshold was not adjusted for the aftermath of Civil War inflation. Since outside anthracite mine labour, for example, was remunerated at about 8 cents an hour in 1860, but 20 cents in 1870 (DLWRR Coal Department, 1860, 1870), much smaller concerns could potentially have been included at the latter time point, thereby significantly changing the population of firms subject to enumeration. Also, since most businesses were still very small in the Civil War Era, a limited degree of downward ‘massaging’ of the output figures by individual artisans could have had a large effect on the numbers of concerns actually enumerated.

In the absence of any consistent accounting standards across industrial sectors, not to mention variations in the treatment of issues such as asset depreciation, the reporting and interpretation of figures for capital invested by firms was necessarily fraught with difficulty. The Walker Report also highlighted a number of more specific problems in this regard, including major opposition from firms to respond to the question at all, lack of knowledge by most small proprietors of the actual figure, and for corporations, failure to distinguish between the value of issued share capital at par and current market value of shares, when the figures could easily differ by ‘50 or 75 percent’ (U. S. Census Office 1872, 381). Branch plants could also report capital differently than head offices, as seen in an earlier example. While the enumerators may have encountered opposition from firms, based on inspection of a wide variety of schedules from different states, this does not appear to have resulted in frequent blank columns of capital data. Instead, many of the figures appear rounded to convenient, if not very accurate totals, especially at the lower end of the range, but also at the higher end, suggesting that a good deal of rough estimation took place to encourage the enumerators on their way. A detailed check on the Bateman-Weiss-Atack 1870 sample
confirmed this tendency. Out of nearly 10,000 firms, more than 27% had a listed capital corresponding to one of the $500 increments between $500 and $2000, while larger $10K incremental values from $10K up to $100K had many more occurrences than intervening values. Unfortunately, it would be extremely difficult to undertake any kind of systematic independent checking of these capital figures, e.g. for individual cities or states. Occasionally, state bureaux of industrial statistics collected relevant data using their own reporting methods, but these had widely varying response rates by firms, and questions about capital employed were asked in some years, but not others, or only for selected industrial sectors (see for example, the Annual Report of the Secretary of Internal Affairs for 1877, 533-5, and 1881, 70-75). Therefore, it is difficult to disagree strongly with the final assessment of the Walker Report that statistics of capital invested were ‘entirely untrustworthy and delusive’ (U.S. Census Office 1872, 381). At best, they are broadly indicative in counties where enumeration was assiduously conducted; at worst they may be grossly inaccurate and misleading.

The Walker Report also reminded users of the statistics on wages that they only represented a fraction of actual labor inputs, because they did not include the inputs of artisans, who paid themselves from the profits of the business, though this point was not made clear in the printed instructions to enumerators. In some industrial sectors, this issue was very significant, as there were more artisans than ‘hired hands’ at work (U.S. Census Office 1872, 381).

The Tabulation Process

While the literature from the 1890s onwards reveals a certain reluctance either to challenge the representativeness of the manuscript schedules or to test their veracity or comprehensiveness against non-census sources of data, certain aspects of the interface
between the manuscript schedules and the published county level reports have received significant and justified critical attention, as can be seen from Table 1. Walsh has identified ‘gross errors and deficiencies’ in processing the data in the schedules into the published county level reports in the Wisconsin 1850 and 1860 census. These included omission of meat-packing in most counties in 1850 and more than one hundred significant disparities between the manuscript schedules and printed tabulations in 1860 (Walsh 1970). In a similar vein, Atack and Bateman have identified evidence of arbitrary massaging of the figures by Washington bureaucrats, errors in county tallies in Florida and Oregon and typographical errors in the California tabulations. As a result they express scepticism about any research findings based solely on the printed county level reports (Atack and Bateman 1999, 186).

In addition to these problems, which may be specific to individual states or counties, there are more generic issues concerned with the overall methodology used for classifying individual firms into broader categories for tabulation purposes. These have not been widely discussed in the literature. The initial problem is that there is no surviving documentation about how the classification was undertaken, i.e. there is no equivalent for tabulation work of the ‘instructions to enumerators’. This provides considerable scope for inconsistency between individual county or state summaries, not least because of the wide range of possible firm types and the fact that many firms produced a variety of products. For example, how should a firm that builds both bridges and railroad cars be classified, or one that produces car wheels and general castings? Questions such as these affect the ability of researchers to match tabulated categories to original entries in the manufacturing schedules, especially if the number of firms in the category is quite large. This in turn can cause difficulties for attempts to determine whether all the firms enumerated have been included in the tabulations. Omissions could be inadvertent or potentially deliberate, especially in the case of large firms,
as will be seen in an example in a later section. Either way, the accuracy of specific tabulations could be significantly affected.

There are two further aspects of the problem of matching schedules to tabulations. The first is that several states lack surviving schedules for some or all counties, mainly in the period 1850-70. For example, a substantial proportion of the Ohio counties, covering the cities of Cincinnati, Cleveland and Columbus, are missing in 1860 and several counties again in 1880. Secondly, from 1880 onwards a new practice of using special agents with industry expertise, in addition to general enumerators, was used, mainly in larger cities, to collect data on a number of industries (Wright 1900, 63). However, the manner of dealing with the special schedules is somewhat confusing. In 1900, for example, the special schedules pertaining to eight industries, including flour and grist mills, brickyards and tanneries, were simply given to enumerators, but for 24 other industries, e.g. iron and steel, special agents were placed in charge of the returns, which were handled by mail, and special industry specific reports were later published (U.S. Census Office 1900, 51-3). A similar, if simpler, approach was adopted in 1880. It involved both special schedules collected by enumerators and special returns collected by special agents, though the process is not well documented. None of the special returns have survived, according to the National Archives (Delle Donne, 1973 referenced in Atack and Bateman 1999). However, a large number of the 1880 special schedules can be found, interleaved with the standard manufacturing schedules for counties in New York State, Ohio and Pennsylvania, for example (U.S. Census Office 1880). The printed heading for the standard schedules lists ten industries to be entered on special schedules instead. However, the special schedules themselves include additional categories for meat packing and leather tanning. Although one of the ten special industries on the standard schedule heading is listed as ‘coal mining’, on the actual special schedule in question this has become ‘small coal mines’ and evidence of completed schedules in known
large-scale coal mining areas, indicates it was not, in fact, used to report coal mining proper. A further important issue is that iron and steel works were excluded from the 1880 standard schedules. There was no documented special schedule for this sector, yet a substantial quantity of information was still collected by special agents and published, both as part of the standard county by county manufacturing summaries and in one of the special census reports (U.S. Census Office 1888). Direct evidence of this exclusion process can be found in examples such as West Middlesex Township, Mercer Count, PA, where entries mistakenly made on the standard schedule for two blast furnaces and a rolling mill were marked ‘omit’ in later marginal annotations. Similarly, in New Ringgold, Schuylkill County, PA, extensive details of the blast furnace leased from the Philadelphia and Reading Coal and Iron Company were scored out and marked ‘taken by Special Agt’, in large letters (U.S. Census Office 1880).

In relation to the schedules that now survive, these findings in relation to the mining and iron and steel industries (in 1880 only) are somewhat unwelcome. On the positive side, county level printed summary data for these sectors have come down to us, in the standard manufacturing report, or special reports, or both (U.S. Census Office 1883a; 1886; 1888), but set against this, there are no surviving records of the individual company entries that were used to create the county level summaries, so the latter cannot be checked using census derived information. As the originators of the dataset indicate, this also means that the 1880 manufacturing census sample (Atack and Bateman 1999, Bateman et al., n.d.) does not contain these two sectors and in this respect is less representative than the published county tabulations, a point they do not make and which arguably runs counter to their contention, noted earlier, about the lesser reliability of the tabulations compared to data derived directly from the manuscript schedules. The lack of these two sectors is of considerable numerical
significance, since in 1880 coal mining employed 171,464 men and boys and iron and steel
140,978 hands (U.S. Census Office 1886, xxviii; 1888, 9).

A final issue that needs to be addressed is the unambiguous evidence of serious
omissions of specific standard categories from individual county tabulations. Many examples,
which are also important for the later discussion of the transportation sector, can be found in
the 1870 census, e.g. in relation to a sub-category of machinery, entitled ‘railroad repairing’.
In Crawford County (OH), this ‘railroad-repairing’ sub-category does not appear, so none of
the substantial numbers of railroad workers in different shops there, including those of the
Pittsburgh, Fort Wayne and Chicago Railway in Crestline, can be identified, even though the
latter railroad has an entry in the manuscript schedules (U.S. Census Office, 1870a; U.S.
Census Office, 1872, 712-718; Perrin, Battle and Goodspeed, 1881, 500). The same problem
arises in Marquette County (MI), Allegheny County (PA) (Pittsburgh) and in Wayne County
(MI), where none of the Detroit railroad shop activities are identifiable, when it is known that
there were 231 employees at the shops of the Michigan Central RR in the city (Michigan
Central Railroad Annual Report for 1869/70, 44). It should be noted that these examples
were the first few checked, not the result of an exhaustive search, so there will doubtless be
many more cases yet to be uncovered. In some instances, the railroad-related information
may have been incorporated in other categories, in others, omitted altogether. However, it is
very difficult, if not impossible to determine the precise status of individual cases, even
assuming the original schedules survive. What remains clear is that the 1870 tabulations
have misrepresented railroad-related manufacturing activity to a significant degree.

Between-Census Problems

The Enumeration Process
Major types of problems under this heading are listed in the left-hand columns in Table 2. The first group of issues relate to the changing nature of industry over time. In the latter part of the 19th century, average firm size increased progressively; see, for example, Hirsch’s study of industrialisation in Newark (Hirsch 1978, 25). In simple monetary value terms, this trend was reinforced between 1860 and 1870 by the interaction between inflation and the $500 enumeration threshold discussed earlier. However, the deflation of the late 1870s (Fels 1959) and the removal of the threshold by 1880 produced an effect in the reverse direction. Secondly, firms not only increased in size, but also in the complexity of their organization (Chandler 1962, 1977). For example, there is the well-known shift in Pennsylvania from scattered small charcoal furnaces during the 1850s to large integrated iron and steel works, which operated both multiple blast furnaces on one or more sites and distant banks of coke ovens in the Connellsville region (Warren 1973).

While the nature of industry itself was changing, very little attention has been directed to examination of the changing definitions of ‘manufacturing’ used by the Census Office. One key point is clear, the construction of avenues of transportation, namely roads, railroads and canals was excluded from manufacturing, as was the ‘grading of grounds’ (U.S. Census Office, 1872, 376). However, the status of workers engaged in the construction of new manufacturing plants is less apparent. Another contentious category was activities related to repair and maintenance. Stuart notes that in the course of preparing the final publications of the 1890 census, comparisons were made of industrial categories reported in 1870 and 1880 and it was found that certain types of repair work were included in 1870 and 1890, but not in 1880. Incidentally, the same applied to the millinery, dressmaking and bottling categories (Stuart 1898, 623).

Other evidence of variations in reporting practice can readily be identified. One good example is coal mining, which was part of the general manufacturing enumeration in the
years 1850-1870. In 1860, it appears as part of the county manufacturing tabulations, but in 1870 mining statistics were reported separately by state and county (U.S. Census Office 1872). In 1880 only the special report on mining survives (U.S. Census Office 1886), not the manuscript schedules, apart from isolated sheets. This prevents a consistent sampling strategy for mining schedules being implemented across all four census years.

Another more complex example, which necessarily overlaps with the first two types of tabulation problem on the right-hand side of Table 2, is the case of railroad shops and the manufacture of locomotives and rolling stock. A problem is immediately apparent because these shops often engaged in the latter types of manufacture, in addition to the day-to-day work of repairs and maintenance, which raised difficulties in terms of categorisation. Elaborating beyond Stuart’s earlier quoted remarks, railroad shops/repairing were not enumerated in 1860, whereas in 1870 they were supposed to have been enumerated and tabulated as a sub-heading of machinery. Unfortunately, previous examples have shown that this reporting requirement was not consistently applied across different states and counties. Manufacture of freight and passenger cars appears as a separate heading, but locomotive manufacture cannot be identified as such. In 1880, the only relevant category tabulated is ‘cars, railroad, street, and repairs’, which does not match the 1870 definition. Railroad shops are neither enumerated nor tabulated. Lessons had been learned by 1890, however, and two clearly defined categories are tabulated, albeit by states, not counties. These are ‘cars and general shop construction and repairs by steam railroad companies’ and ‘cars, steam railroad, not including operations of railroad companies’. The manufacture of locomotives cannot be separately distinguished. The same categories are utilised in 1900, but additionally there is a brief special report on locomotive manufacture. From 1880 onwards, these categories are also tabulated, where relevant, for 100, 165 and 209 principal cities respectively (U.S. Census Office 1883a; 1895a; 1902). It should also be noted that both the 1880 and 1890 censuses
produced special reports on transportation. These volumes provide extremely valuable data about individual railroad companies and railroad expansion within very broad geographical sub-divisions of the USA, but they do not have statistical breakdowns by state or county that would make them comparable to the rest of the manufacturing census (U.S. Census Office 1883b; 1895b).

A second group of important questions about inter-censal comparability were originally raised by North in papers published in the 1890s. In the first (North 1890), he questioned whether successive manufacturing censuses might lack comparability because they were taken at different stages in the cyclical fluctuation of the economy, though he did not pursue the point in any depth. Answers to this question may depend on the timescale considered. Examination of the Ayres index of business fluctuations (Price 1933) suggests that in the short-term view, i.e. a few months on either side of the census month, the 1860 and 1870 censuses were at broadly similar points on the rising limb of modest and short-lived periods of business expansion. In contrast, the 1880 census was on the falling limb of a short period of pull-back from an earlier brief expansion. On a longer timescale, 1860 represented the final phase of return to overall growth following the 1857 Panic, while 1870 came at the end of a period of mildly fluctuating business fortunes that had persisted since 1867. The 1880 case was different again, as it represented the first phase of the lengthy railroad boom that followed on from the deep depression of 1873-8. It is interesting to note that none of the census years above coincided with major recessions and the statistical good fortune continued in 1890. Thus, despite undoubted differences in capacity utilisation between the census years, it was not the case that one census represented a period of major expansion while another reflected widespread idling of capacity, firm bankruptcies or closure of works, as would have been the case had the census been taken, for example, in the year 1877.
In the later papers, North noted the strange absence of systematic reporting of miscellaneous manufacturing expenses in censuses prior to 1890, which would affect any calculations of profit margins made from the data, and the lack of comparable standards of measurement for units of machinery capacity between different years (North 1899).

Prior to 1870, firms were asked only about numbers of employees. In 1870, the census also recorded the number of full-time-equivalent months of operation. By 1880, the scope of employment related questions was significantly expanded to encompass not only the maximum number of employees, but also the length of the working day in summer and winter, and the extent of full- and part-time operation. Prior to 1880 it is therefore difficult to be sure that firms were reporting labour inputs any more consistently than they were capital inputs. Available evidence indicates that the working day declined progressively in length from 11.5 hours in the 1830s to 10.0 hours by the 1880s (Atack and Bateman 1992). Nearly 40% of establishments worked for less than the full 12 months in 1880, and the average extent of downtime among this group of firms was 3.3-3.5 months (Atack et al. 2002, 797). Simple employee counts do not therefore imply comparable labor inputs between different firms and it is also not possible to determine how comparable the figures are for censuses pre- and post-1880.

The Tabulation Process

To an important extent, this heading reflects many of the key difficulties of inter-censal comparison in the manufacturing census. Problems of lack of compliance with tabulation procedures within a census become compounded when those procedures themselves (in terms of the tabulation categories used) vary between censuses. Several examples of the interpretative difficulties these issues raise have already been given. To this must be added the possibility of variations in small size bias between censuses, i.e. large
firms may be omitted from the relevant tabulation in one census, even if they were
enumerated, while they are included in an earlier or later census tabulation. If the data were
to be taken at face value, especially if other firms in the sector were small, this would
obviously lead researchers to incorrect conclusions about employment/investment variability.
To the problem of temporal inconsistency must be added the dimension of geographical
variability, which has major implications for comparative mapping work. Specific counties
where tabulation procedures were not followed in one census may comply more rigorously in
the next, but without detailed domain knowledge or other data sources from outside the
census, it is impossible to determine where this has happened and which years and industrial
sectors are affected.

Lastly, there remains the traditional census analysis problem of changing
administrative boundaries, which has attracted increased attention since the advent of
historical GIS methods (Gregory and Ell 2007). While the extraordinary efforts of the Atlas
of Historical County Boundaries Project at the Newberry Library have documented all these
changes (Long and Tuck Sinko 2010), their effects still have to be incorporated appropriately
into analytical studies. Many of the changes are minor, but others, such as the splitting off of
Lackawanna County from Luzerne County, PA in 1878 had major effects, transferring the
rapidly expanding industrial and mining city of Scranton into the former, while leaving
Wilkes-Barre in the latter. Since larger manufacturing firms tended to be concentrated in and
around urban areas, simple data adjustment methods, such as areal interpolation are less
satisfactory than in the case of the population census. For sampling based studies, the
problem has been addressed by only using counties where no boundary changes took place
during the period of interest (Atack, Haines and Margo 2011, 166). However, for map-based
studies this is not appropriate and questions remain about the possible introduction of hidden
biases, e.g. if rapidly growing regions are more likely to experience boundary changes than
those where population is static or declining. GIS point-in-polygon methods could theoretically resolve boundary change problems, but for this to work several items of information would be required. These would include the exact locations of all establishments likely to be affected by boundary changes, whether the establishments were actually enumerated and which category they were classified into in the relevant published tabulation. Obtaining such information would be a major undertaking, if it were indeed feasible, since in many cases involving branch plants enumerated with their head offices, the location of the branch plants may not have been given in the census entry.

Wider Implications of Inter-Censal Enumeration and Tabulation/Classification

Problems

The widespread absence of consistency in the treatment of different manufacturing sectors in the decades prior to 1890 means that the census by itself cannot provide a reliable means either of tracking the growth of specific sectors over time in specific locations or comparing one sector to another within and between censuses. As has been demonstrated, the problems are particularly acute for the transportation sector, though not confined to it.

There are two main reasons why researchers need to be concerned about these findings. The first is that a number of previous studies have made exactly the kinds of inter-censal comparisons whose validity has now been seriously questioned. The second is more specific to transportation, in that a number of studies have argued about the relative importance of the railroad sector in stimulating other kinds of industrial growth (Cootner 1963; Fogel 1964; Jenks 1944), so it is important that the evidence base is as accurate as possible.
The problem of inappropriate inter-censal comparisons applies, for example, to the figures reported by Niemi (1974) in his classic and widely referenced study. It also has a major impact on Meyer’s (1990) study of cities in the AMB. He compares location quotients for SIC manufacturing categories, based on the county level manufacturing data for 1860 and 1880 (Meyer 1990, table 4, 743). The transportation sector, which is one of his SIC categories, forms an important part of his argument about the role of exchange mechanisms in city growth, but in neither of these years does the census contain meaningful figures for this sector. Further to this, since railroad shops were substantial employers, often among the largest in urban areas (Wilson 2005), their complete omission from the 1860 and 1880 census and partial omission from the 1870 dataset means that the digital samples from the enumeration schedules necessarily contain a specific bias away from some important large concerns, which could affect the findings of analyses, such as those reported by Atack, Haines and Margo (2011).

Given the potentially large size of concerns involved in transportation-related manufacture, regardless of whether they were railroad shops or independent manufacturing firms, and the lack of accurate census data about them, it is essential to investigate ways of improving the estimates of the scale of these operations using non-census sources. To demonstrate some possible ways in which this can be achieved, a case study of Cleveland, Ohio will now be undertaken, as it was a rapidly growing city during the period (Robison 1887; Rose 1950), with a large railroad sector. To avoid over-concentration on railroads per se, some additional investigation of transportation-related industry and oil refining developments will also be undertaken, to see whether the kinds of census inadequacies already identified can be found in these sectors also. The wider significance of these findings in relation to the development of the AMB is examined elsewhere (Healey 2014).
Derivation of New Employment Estimates for Selected Manufacturing Sectors in Cleveland 1860-1880

The Railroad Sector in 1860-1: Shop Men and Total Railroad Employees

Prior to 1860 the city of Cleveland in Cuyahoga County on the shore of Lake Erie was served by five major railroads. Western connections were provided by the Cleveland and Toledo RR (CTRR), while those to the south-west were provided by the Cleveland, Columbus and Cincinnati RR (CCCRR). From the east and south-east, traffic entered the city via the Cleveland, Painesville and Ashtabula RR (CPARR), the Cleveland and Pittsburgh (CPRR) and the Cleveland and Mahoning (CMRR) railroads (Cleveland Board of Trade for 1865, 5-6). The CTRR and the CPARR were merged into the Lake Shore and Michigan Southern Railway (LSMSRR) in 1869 (LSMSRR Annual Report for 1870, 5-6). A map of these railroads can be found in Healey (2014). The Cuyahoga County manuscript manufacturing schedules are among the missing Ohio counties for 1860 and the printed tabulation omits railroad shops, so non-census sources such as city directories, newspaper records and State Government Reports have to be used instead, if railroad employment is to be estimated for this date. Newspaper reports usually contain evidence of actual visits made by reporters to the shops in question, rather than being based on second-hand information (see individual references below). State reports, either from the office of the Commissioner of Statistics or later the Commissioner of Railroads, indicate from the outset, both the establishment of a large, state-wide network of nearly 800 correspondents with local knowledge, by the Statistics Bureau, and the use of annual circulars for data collection. The latter were followed up with persistence by government officials, in the event of non-submission or unsatisfactory reporting (Ohio, Commissioner of Statistics Report for 1858, 31; for 1859, 3; Ohio, Commissioner of Railroads Report for 1869, 7-8). It is therefore
considered reasonable to use data derived from these sources, as a substitute for data not
reported by the census.

The first task is to establish which railroads had shops in the city by this time, before
estimating likely employment levels. As early as March 1857, a newspaper report stated that
the CPARR was employing 200 hands in their substantial Cleveland roundhouse and shops
complex. Although much lower figures of 60-70 men were reported the following year in the
aftermath of the 1857 Banking Panic, employment had rebounded to near 1857 levels by
1862 (Annals of Cleveland 1857, 272; 1858, 448; Healey 2014). A further 1858 report noted
that the newly established CMRR Shops already had a complement of 50 men, at a time
when the company had only recently begun full-scale operations and all the rolling stock was
of recent manufacture, so the requirement for repairs was limited (Annals of Cleveland 1858,
449). The CCCRR was the largest of the railroads entering Cleveland during the 1850s and
had a total workforce of 775 by 1858, compared to 577 for the CPARR and 625 for the
CTRR, though a significant proportion of these employees would have been trackmen or
workers at depots along the lines, who would have lived outside the city (Ohio,
Commissioner of Statistics, Second Annual Report for 1858, 75). There is ample evidence
that the CCCRR progressively developed substantial shop complexes over time, but
unfortunately there are no precise employment figures for these Cleveland shops prior to
1870. The first documented mention of an ‘engine shop’ for the CCCRR was in 1850, and by
the beginning of 1854 a large car shop had been erected and a ‘heavy force’ was engaged in
manufacturing cars as rapidly as they were required, although rolling stock manufacture did
not extend to locomotives at this time (Annals of Cleveland, 1850, 333; CCCRR Annual
Report for 1853, 4). Late in 1855, the railroad commenced grading for another engine house
and machine shop near its terminal facilities on Lake Erie (Annals of Cleveland, 1855, 487).
In 1857, it purchased the locomotive works of the independent Cuyahoga Steam Furnace
Company on a site in central Cleveland adjacent to the river, so it could manufacture and
repair its own engines, though there was initially a lack of demand for additional motive
power in the depressed conditions following the 1857 Banking Panic (Annals of Cleveland,
1862, 582; Joblin, 1869, 398; CCCRR Annual Reports for the years 1857, 1859, 1860). A
further phase in the development of the company’s facilities took place in the years 1864-66.
This involved expansion on land adjacent to the locomotive shops and in the lakeside
terminal area. Substantial new brick freight and roundhouses were constructed in 1864, in
addition to machine and repair shops, and the car shops were extended (Annals of Cleveland,
1864, 233; CCCRR Annual Report for 1864, 14).

In contrast to the CCCRR, CTRR shop men were unlikely to have been resident in
Cleveland in 1860, because the company closed its west Cleveland shops in 1857 and moved
all repair work about 40 miles west to its Norwalk shops (CTRR Annual Report for 1856/7,
24). Map evidence from 1858 (Hopkins 1858) clearly shows just to the east of the CPARR
shops the substantial roundhouse and repair shop of the CPRR, established in the early 1850s.
These shops employed 155 men by 1861 (Healey 2014). By 1868 the overall workforce (not
just shop-men) of the CPRR had grown substantially to 1,137 employees, almost as large a
complement as the Cleveland, Columbus, Cincinnati and Indianapolis Road (CCCIRR),
newly formed by the consolidation of the CCCRR with the Bellefontaine and Indiana RR
(Ohio, Commissioner of Railroads, Annual Report for 1868, 100, 107).

The evidence therefore points to a minimum of several hundred railroad shop-men at
the start of the 1860s, allowing for possible fluctuations with business conditions. A more
specific, though provisional, estimate of 450-475 shop-men is given by (Healey 2014). This
initial estimate was used in conjunction with a multiplier of 95.7 other railroad workers to
every 100 shop-men to infer the presence of 431-455 additional railroad workers, most of
whom would have lived in Cleveland. This multiplier was based on later data for Cleveland
railroads in the 1880 census (see more detailed explanation below). Adding an allowance for CTRR train men (since this railroad did not contribute to the total for shop-men but its tracks ran into the city), resulted in an initial estimate of about 900 railroad men in Cleveland at this time (Healey 2014), none of whom appear in the Manufacturing Census tabulations.

Since this omission is so large, it is important to examine another independent source, in conjunction with the newspaper reports, to determine if the above employment estimate is realistic. To this end, analysis of city directory data was undertaken, the closest applicable volume being for 1860-1 (Cleveland Directory 1861). No claim of comprehensiveness is made for this resource, since other studies in both earlier and later time periods suggest directory coverage could vary from about 70 to almost 100% of the corresponding enumeration of the white population in the census (Alexander 1982; Goldstein 1954; Knights 1969). However, for present purposes, it can be utilised to set a lower bound on the size of employment in the railroad sector. The first pass through this directory resulted in the abstraction of nearly 5,800 industrial and transportation workers out of a total of approximately 14,000 directory entries. Simple counts of obviously self-identified railroad workers in the resulting list suggested an employment count broadly similar to that given above. However, subsequent more detailed analysis of this initial database indicated the need to add additional entries to ensure absolutely consistent reporting. Although individuals associated with most of the relevant occupations had been correctly incorporated into the database, it was found that other broad occupational groupings, such as laborers, and those with a range of sub-types, such as agents and clerks, had not been comprehensively included, and additional individuals were needed to ensure the comparability of the calculations for different occupational sub-groups in the final tabulations presented here. Some 600 further entries were therefore added to the final database to make 6,425 records in all. Extremely
fine-grained occupational analysis was then conducted in an attempt to refine the initial employment estimates and this work is reported here.

Previous work by the present author (Healey 2013) has shown that an important issue in the analysis of railroad workers in the census is the difference between railroad specific trainmen (brakemen, conductors etc.), the vast majority of whom identified themselves as railroad men, and generic tradesmen, who overwhelmingly did not. Analysis of the Cleveland city directory database reveals exactly the same pattern, as can be seen in Table 3. This table is necessarily complex, because the aim is to clarify exactly what can definitely be determined about railroad employees and to distinguish it from other estimates about the numbers possibly employed in this sector, while also placing bounds on those estimates. At the same time, the categories in the table are constrained by the differential levels of occupational information provided by individuals responding to questions posed by the directory compilers. The guiding principle in table construction is therefore only to categorize based on information actually provided in the directory entries, not on inference from stated occupations. The key distinction, looking across the table in the horizontal, is between individuals who did not identify themselves as railroad workers and those who did (either in general or specifically as working for a named railroad). A second level subdivision in each of the two main categories is then between those who indicated a work location, such as a factory or railroad shop, and those who did not. In the vertical dimension, actual or potential trainmen are distinguished from several broad types of generic workers, who in turn are separated from tradesmen, as commonly understood, who are also of a generic kind. The point about the latter group is that they are potential candidates for undeclared railroad shop workers. In addition, there is a final group of ‘other railroad workers’ that do not fit into the above more specific occupational categories. While specific less common railroad occupations may only appear a few times in the directory, unlike the
categories higher up in the table, in sum they form a sizeable group of railroad workers overall.

The first key finding can be found in the bottom right-hand corner of the table, which indicates that 580 men are unambiguously identifiable as railroad workers, and for the majority, the railroad company is also known (see breakdown in Table 4 below). This represents the absolute minimum number of such workers in Cleveland at the time. However, there are several important pieces of evidence in Table 3 that would suggest the actual total was much higher. The first of these is the ‘non-railroad identified potential trainmen’ section of rows and columns. These provide a breakdown of 163 individuals working in occupations largely associated with railroading, though this is not guaranteed. Thus baggage workers, brakemen and conductors, would mostly have been railroad men, but occasionally they could be found working for steamship lines on Lake Erie (the ‘vessel worker’ heading), or on street railroads. Engineers and firemen are more problematic. Both groups were frequently railroaders, but the directory provides clear evidence for the former group, at least, that this appellation was also used by workers in factories and on steamboats. Since there is insufficient evidence to make close estimates of the real number of railroad men in each occupation within this overall grouping, a conservative, but somewhat arbitrary, figure of two-thirds of the 140 potential trainmen of unspecified work location (93 men) has been taken, as a reasonable indication of the number likely to have been railroad employees.

The non-railroad-specific generic workers present a different problem. The term ‘agent’ covered a wide spectrum of related activities, but as a result, the associated directory entries were often much more specific as to employment sector, e.g. book agent or insurance agent. Hence, a majority of these individuals were definitely not railroad workers. The clerks follow a somewhat similar pattern, although a smaller proportion give a specifically non-railroad work location. Laborers are different again. Very few give a work location,
suggesting a lack of identification with any specific employer, as might be expected when
many were doubtless day laborers. Unfortunately, their total numbers are very large, which
introduces a significant element of uncertainty into any estimation of their potential
contribution to railroad employment. One way of addressing this problem is to find evidence
from other railroads of similar size, to serve as a guide to likely employment levels. The
Boston and Maine Railroad is a good example. In 1861 it employed 585 men (Boston and
Maine Railroad 1861, 36-7), of whom 43 were laborers at the freight and passenger depots at
the terminus in Boston. Although Cleveland itself was smaller than Boston, it also provided
substantial terminal facilities for five railroads, which on average were each of broadly
similar size to the Boston and Maine, both in terms of total earnings and employment, though
freight earnings tended to be higher for the Cleveland railroads and passenger earnings lower.
Applying the Boston and Maine figure to the Cleveland railroads would give 215 such
workers (43 x 5), of whom only 32 are specifically accounted for on the right hand side of
Table 3, leaving 183 as a proportion (15%) of the 1218 unspecified laborers on the left hand
side of the table. Applying this conservative proportion to the generic workers category as a
whole would attribute an estimated 236 of these men (1576 x 0.15) to the railroad sector.

The category of generic tradesmen raises at least two major issues. The first of these
is that of the non-railroad identified workers, only 14.2% give a workplace, and if the slightly
special case of the 116 ship carpenters in the ‘vessel workers’ column is removed, this
percentage drops to 6.9%. Hence a large number of skilled tradesmen (1358), in quite
specific occupations relevant to railroad work, remain as candidates to be undeclared railroad
employees. Secondly, only 45 generic tradesmen identified themselves as railroad workers,
and of these, only 22 gave their workplace as the shops. The complete absence of
blacksmiths, carpenters and tinners (who worked on passenger car roofs), and the presence of
only three recorded shop-based boilermakers and 14 such machinists confirms there is a
reporting problem. Earlier conservative estimates, based on a number of newspaper reports, suggested there were 450-475 railroad shop-men, so the remaining 428-453, say 440 in round figures, who are missing (after subtracting the 22) must have made up about a third of the large pool of 1358 unallocated generic tradesmen found in the directory. This is not fanciful, since two of the newspaper reports of the period give employee breakdowns that support the argument about under-reporting. For example, in early 1861 the CPRR shops in Cleveland employed 41 machinists, 21 blacksmiths and 24 carpenters (Cleveland Morning Leader, Feb. 19, 1861), while in late 1862, the corresponding figures for the CPARR shops were 34, 15 and 40 men (assuming carpenters can be equated to ‘wood shop’ workers). The CPARR shops alone also employed 15 boilermakers at this time, but there is no indication of a significant contingent of shop laborers (Cleveland Morning Leader, Oct 21, 1862). Other evidence, not reliant on the Cleveland newspapers, confirms that blacksmiths, machinists and carpenters were employed in quantity by railroads of the period. For example, in 1857 the Baltimore and Ohio, though twice the size of all five Cleveland railroads combined, had 138, 315 and 268 workers in these three occupations respectively (Healey 2013, 23).

The final tally of all the sub-categories is summarized in Table 5. Double counting has been avoided, because the ‘estimated’ column largely relates to data on the left hand side of Table 3, while the ‘identified’ column simply contains the category sub-totals from the right hand side of that table. Several additional points arise from these figures. Firstly, no attempt has been made to extrapolate from known to unidentified depot workers, as there is no extant evidence available in sufficient detail to allow this to be done. That said, it is apparent from the Table 3 that just the known depot men constituted a significant proportion of the railroad workforce in the city. Secondly, there has also been no multiplier applied to the ‘other railroad workers’ who are outside the depot location column. Some of these were management or specialist workers, such as auditors, and in general the recorded occupations
in this group were of low frequency. This prevents any useful generalization about possible under-reporting. Finally, despite conservative and category-specific estimation, of a more detailed kind than has previously been undertaken for railroad workers using city directory sources, the clear finding is that the likely number of railroad workers was 50% greater even than the earlier estimate of 900 men (Healey 2014). The latter was based on much simpler counts and assumptions than the present analysis. The new estimated total of 1349 men (Table 6), not only enhances the argument presented in that earlier study about the importance of railroad employment, but in the present context, it makes the omission of any reference to railroad work in the 1860 manufacturing census a still more serious problem than originally argued above.

The Railroad Sector in 1870

A simpler approach is possible in 1870 because the Cuyahoga County manuscript schedules have survived and they contain details of three of the railroad shops in the city, though one was not enumerated. Details for the three shops can be matched directly to the ‘railroad-repairing’ category in the printed tabulations, so the under-enumeration is reflected in both sources, adding a further type of inconsistency to the 1870 census reports. The schedules indicate that the CPRR shops employed 160 men, as compared to the 600 at the multi-site CCCIRR Shops and 200 at the shops of the Atlantic and Great Western RR (by then lessor of the CMRR) (U.S. Census Office 1870a). During this immediate post-bellum period, newspaper reports confirm the manufacture of locomotives, rolling stock, and iron bridges, in addition to repair work, at the CCCIRR, CPRR and CPARR shops in the city (Annals of Cleveland, 1868, 682; 1869, 467-8; Cleveland Board of Trade for 1865, 18). Unfortunately, the CPARR shops, which had become part of the operations of the LSMSRR by this time, are missing from both the 1870 census schedules and tabulations; so only a rough estimate of their employment can be made for this date. However, figures are available...
for 1878. At this time these shops employed 286 people, but the report noted that there had been a ‘large reduction’ in employment levels since 1872 (Ohio, Bureau of Labor Statistics, Second Annual Report for 1878, 102). The opening of the new LSMSRR yards in 1874 at Collinwood, 7 miles east of the centre of Cleveland, also complicates the position a little. These yards were primarily for handling freight trains, and initially contained just a large engine house, so a very small number of shop men would have worked there (LSMSRR Annual Report for 1873, 13; Encyclopedia of Cleveland History, 1997). However, the main repair shops remained within the city of Cleveland as late as 1892 (Cram, Beers and Bennett, 1892). Thus the 286 employees referred to above can be assumed to be at the main Cleveland shops. Given that the number of LSMSRR employees in Ohio had been just over 37% higher before the 1873 Panic than after it, when strict economies of operation were introduced (LSMSRR Annual Report for 1874, 10; Ohio, Commissioner of Railroads Annual Report for 1873, 356; for 1880, 922), this suggests the number of shop men working for this railroad could have been as high as 400 in the early part of the 1870s. Taken together with the 960 shop men working for the other three roads, gives an estimated total of about 1360 shop men in the city in 1870. This conservative figure compares favourably with the earlier fulsome claim by the Board of Trade that in the busy year of 1865 ‘about 1500 men’ were employed at railroad shops in the city (Cleveland Board of Trade for 1865, 18).

Once a figure for shop men is available it is possible to derive a further estimate of total railroad employment in the city, in the following way. For railroads as a whole in 1880, the first date for which consistent figures are recorded nationally across all major companies, shop men constituted about 21% of total railroad employment, though in the case of the large railroads of interest here, the figure ranged from 18-37% (Licht 1983, 34; calculated from Table VI in U.S. Census Office 1883b, 261f.). For these same Cleveland railroads, comparison of figures for some of the other sub-categories of workers indicates that there
were on average 95.7 trainmen and administrative staff for every 100 shop men. Though these men were distributed among the main divisional centers, so were the shops, hence it is reasonable to use this multiplier on Cleveland shop men in 1870, assuming that the mix of employee types had not changed dramatically 1870-1880, to obtain an estimate of Cleveland trainmen/administrative staff, i.e. about 1300 men in round figures. Added to the shop men, this produces an estimate of 2660 men. The other employment categories of section men (track maintenance gangs) and station men would have necessarily been much more spread out across the rail network, but directory evidence clearly shows that a significant number of the latter were employed at the Union Passenger Depot and the freight depots of the individual roads. These workers would be sufficient to take the final estimate of railroad employment in Greater Cleveland in 1870 to at least 2750 men (Table 7), dwarfing all other employment sectors in the city at the time and representing a doubling of numbers since 1860/1. The only important footnote to this, and one which is very indicative of the overall numbers of railroad men in the city, is that after the opening of the Collinwood yards in 1874, some 500 LSMSRR employees (very largely trainmen) are reported to have moved to this location in East Cleveland township, though this would have taken place over a period of time. Most would have come from central Cleveland itself, but doubtless some also came from Painesville (between Cleveland and Ashtabula, see Figure 2 in Healey 2014), as the LSMSRR closed their stockyards at this location and moved them to Collinwood (Encyclopedia of Cleveland History, 1997; Annals of Cleveland, 1874, 140-1).

The Railroad Sector in 1880

Unfortunately, the 1880 city directory is too large to process in the same manner as the 1861 directory, without the deployment of research resources substantially beyond those
currently available. In common with later post-1870 directories in other cities, they also become much less informative about places of work, so the information yield progressively declines while processing costs rise (cf. Cleveland Directory 1871; 1880). Fortunately however, in the case of 1880, the complete individual level population census records are available from the North Atlantic Population Project (NAPP) (Minnesota Population Center, 2008). Previous analysis of occupational codes for railroad-related workers in this dataset indicated that the trainmen could be identified quite accurately, but the same problem of distinguishing shop men in generic trades arises as in the case of the city directories. Indeed, it is a greater problem, since the census rarely includes any workplace, as opposed to occupational, information.

A total of 21 occupational codes used by NAPP (unharmonized OCC variable – NAPP-modified HISCO codes) have previously been identified as providing a close approximation to railroad-related employment, excluding the generic shop workers (Healey 2015). These include several codes of very minor numerical importance, which overlap with street railroads, such as unspecified conductors and baggage-men. These will inflate the figures, but only very slightly. A further 8 codes provide counts of the numbers of individuals working in the major generic trades utilized by railroad shops, such as blacksmiths, machinists and carpenters, but clearly large numbers of these census individuals worked outside the railroad sector, so the railroad proportion has to be estimated, as before. Minor generic trades such as painters have been neglected to compensate for the minor over-estimation of trainmen just mentioned.

The method adopted was to calculate the total number of individuals in these different groups of codes both for the 54 enumeration districts comprising Cleveland proper, and for the 2 enumeration districts comprising East Cleveland, to capture the Collinwood shops contingent of workers. A total of 1,874 train service employees are identified in Cleveland.
with a further 261 in East Cleveland. The corresponding figures for generic workers were 6,029, of which one-third were carpenters and joiners, with a mere 70 in East Cleveland. Using the previous divisor between trainmen and shop men of 0.957 would give 1,958 shop men, which again is similar to the one-third of generic workers being railroad men derived above from analysis of the 1861 directory entries. The East Cleveland figures, while much smaller, confirm the progressive movement of trainmen to Collinwood, though better-off workers may have decided to remain in Cleveland and commute, while the trivial number of generic workers (say one-third of 70 individuals) supports the earlier conclusion that only a few shop men were employed in connection with the engine house. Thus, a conservative estimate of direct railroad employment in Cleveland city in 1880 is at least 3,832 individuals (1,874 trainmen + 1,958 shop men) (Table 8), with nearly 300 more in East Cleveland. Additional individuals working in the depots have also been neglected in these calculations. Based on just these Cleveland figures this suggests a less than 50% increase over the decade, a much smaller increase than during the 1860s in both absolute and percentage terms.

Depending on whether the documentation for integrated or unharmonized variables is consulted on the NAPP website (Minnesota Population Center, 2008), it might be imagined that these calculations could be obviated by using the IND50US variable code 506, which appears to provide employment counts for the railroad sector directly. However, earlier work has shown (Healey 2011) that this is not the case, because IND50US necessarily fails to account for the unassigned generic workers, as the required information to do this is not present in the census schedules. IND50US therefore overwhelmingly utilizes the same information as the OCC codes, as suggested by the documentation for the integrated variable, together with a very limited amount of information on work type/location occasionally found in the OCCSTRNG occupational transcriptions. These were downloaded separately from the main coded datasets and analyzed to determine how the coding was undertaken. The rules
used to code OCCSTRNGs are not always easy to discern, sometimes questionable and occasionally incorrectly applied (e.g. three railroad callers in East Cleveland, who are assigned to a general (not railroad) conductor category (OCC 36090), when callers are not, in fact, conductors). For completeness, it can be noted that the 506 code produces 2034 railroad workers in Cleveland and 278 in East Cleveland, slightly higher figures than used in the previous paragraph, but spreads them across a much wider group of less specific occupational codes than the restricted list of OCC codes used above. This makes the identification of the appropriate multiplier for shop men much less clear and more difficult to apply. Hence, it was found more satisfactory to base the calculations on the OCC code counts directly.

Lessons from the Railroad Sector

Several initial lessons can be drawn from this detailed case study spanning three census years. Firstly, the absence of consistent enumeration of railroad shops in both the manuscript and published manufacturing census means that no valid conclusions from these sources about the growth or otherwise of this part of the transportation manufacturing/employment sector can be drawn in Cleveland during this important period encompassing the Civil War when the AMB began to emerge (cf. Meyer 1983). Earlier comments about census reporting omissions also indicate that this problem affects a number of other important manufacturing cities. Secondly, very detailed additional investigation using multiple sources separate from the manufacturing census does allow meaningful and comparable estimates, at least of employment levels, to be obtained, but the research resource implications are high. Thirdly, in this and potentially other cases, the high levels of employment identified in the railroad sector, once both shop men and other workers have been accounted for, raises important questions about the economic significance of this sector in comparison to wider manufacturing activity, which the manufacturing census is unable to illuminate.
Independent Transportation-Related Manufacturing

While it is not the purpose here to investigate linkages between industrial sectors or sub-sectors, it is useful to continue evaluation of the reporting of transportation-related manufacturing to see if the problems identified in the preceding paragraphs were unique to the railroads. In this context the manufacture of rolling stock by independent companies is an appropriate second case study. The 1860 Cuyahoga County tabulation lists only one firm under ‘cars’, which employed 30 people with a capital of $25K (U.S. Census Office, 1865, 447) (Table 6). This may have been Morrill and Bowers, although the workforce seems small for a long-established company that produced thousands of cars during the Civil War period and was still employing 70-80 workmen in 1866 (Annals of Cleveland 1866, 643). By 1870, the census tabulation again lists a single concern under ‘cars, freight and passenger’, but with only 10 employees and $10K capital. This concern cannot be unambiguously identified by reference to the manuscript schedules, and even if it could, taking the 1860 and 1870 reported figures together suggests a sub-sector on the verge of extinction. However, the 1870 Board of Trade Report conveys a quite different picture. The McNairy and Claflin Manufacturing Company, stated to be the only independent railroad car builder in the city, had produced 1200 freight cars and numerous streetcars during the year and 15,000 lineal feet of railroad and highway bridge superstructure, giving employment to 400 men (Cleveland Board of Trade for 1870, 29). This company does not appear in the manuscript census, which adds weight to earlier concerns about small size bias, since it was one of the largest manufacturing concerns in the city. Thus the 1870 returns have completely misrepresented the scale of car building in the city at that date (Table 7). Further to this, related manufacturing, such as the casting of car wheels by Bowler and Mohr (40 employees) and the making of railroad car roofs by the Winslow Company, the former appearing in the manuscript census, the latter in the Board of Trade Report (1870 Census, Cleveland Board of
Trade for 1870, 37), have not been associated with car manufacture in the printed census report, so these transportation-related manufacturing activities have either been concealed by the classification process for tabulation, or missed in the enumeration. By 1880, four car manufacturers have appeared in the census report, with a combined total employment of 216 men, so a comparison with 1870 would give a false impression that a previously moribund sector had somehow been revitalized during the 1870s depression (U.S. Census Office 1883a, 322). The printed report can be matched very closely to the manuscript manufacturing census, because employment on car manufacture at the McNairy and Claflin works is helpfully separated from that concerned with bridge manufacture. The population census does not provide a useful check, because in Cleveland the relevant OCC and the IND50US codes are used to cover both car and carriage manufacture and there is further ambiguity in the detailed occupational descriptions (NAPP OCCSTRNG and OCCLABEL) about the location of the work in question. The relevant OCC50US code used (690 – operatives and kindred workers) is too all-encompassing to be of any value here. Almost all the 22 individuals describing themselves as ‘car builders’ on the original schedules, are given the closest available OCC code 81300 ‘Coach, Carriage and Wagon Makers’, though it is actually an incorrect designation, and IND50US code 379 ‘Railroad and Misc. Transportation Goods’. However, in Cleveland there are a total of 428 individuals with a 379 code. Of these, only a further 18 were clearly employed in car manufacture, based on their OCCSTRNG values, while 63 were ambiguously recorded with variants of the designation ‘car shop worker’. This could either mean they worked for a car manufacturer, or were employed on car building and/or repairs in a railroad car shop. The remaining individuals were carriage builders or axle works employees. These sub-counts within the code could only be determined by inspection of the individual transcribed occupational descriptions, thereby rendering the codes themselves of very limited value for present purposes. Thus only 40
individuals (22 + 18) can be unambiguously attributed to the independent (i.e. non railroad company) car manufacturing sector (Table 8), based on the population census, together with an unknown proportion of the other 63 car shop workers recorded. This further indicates that 50-80% of car manufacturing workers must have declared only the generic nature of their work, not its specific location.

In Detroit, by way of comparison, the figures for 1870 and 1880 in this sector are more consistent, since two companies are reported in each year and the total employment is similar in each case at more than 700 workers (U.S. Census Office 1872, 682; U.S. Census Office 1883a, 272). Yet the absence of any data on the city’s railroad shops in either year misrepresents the total employment contribution of the railroad-related manufacturing sector and inter-city comparison with Cleveland would be invalid owing to the inconsistency in the car manufacturing data there.

Oil-Refining in Cleveland

Refining of crude oil developed in the city from the early 1860s onwards (Annals of Cleveland, 1864, 152), though there had previously been a fledgling industry manufacturing oil from coal (Table 6). By the time of the 1870 census, crude refining was an established and successful industry. It appears in the printed tabulation, slightly confusingly labelled as ‘coal-oil, rectified’, apparently with 16 refineries employing about 200 people and more than $500,000 in capital. The same total number of 16 refineries can be identified in the manuscript census, so no major problems have arisen in the classification and tabulation process, though the employment totals based on the two sources appear to differ to a limited degree (Table 7). Following a now familiar story, the number of companies enumerated does not match that contained in city directories or reported by Bradstreet and the Board of Trade, indicating approximately a 60% under-enumeration (Cleveland directory 1866, 1871;
Mercantile Agency 1867; Bradstreet’s 1870). Comparison of data on capital invested
suggests a more serious under-counting for that variable, since it is the smaller companies
that are best represented in the manuscript schedules. For example, as early as 1866 the
Board of Trade reported nearly 50 refineries ‘in more or less successful operation’ and an
invested capital of $3 million (Cleveland Board of Trade for 1866, 27), the latter figure
nearly 6 times higher than the later census total, even though the industry had grown
substantially in the intervening period. By 1870, comparison of sources allows more than 40
refineries to be identified by name (Bradstreet’s 1870; Cleveland directory 1871). Most
importantly, Rockefeller’s recently incorporated Standard Oil Company, with a paid up
capital of $1 million, a refining capacity of at least 2500 barrels per day and 100-200
employees (cf. Joblin, 1869, 422), is noticeable by its absence from the manuscript schedule,
so once again there is incontrovertible evidence of bias towards smaller firms.

To correct this bias, as far as surviving sources allow, the following procedure was
adopted. All the refineries listed in both the 1866/7 and 1871 city directories, but not present
in the manuscript census, were identified (Cleveland directory 1866, 1871). These were
matched, where possible, to extant newspaper reports dating from 1866, which provided
employment figures for a number of firms (Cleveland Daily Leader, January 1866 issues).
This is far from perfect, as a basis for 1870 employment estimation, given the time interval
involved, but it should provide reasonably conservative baseline figures, since the output of
the refining sector was more than three times larger by the census year than it had been in
1866 (Cleveland Board of Trade for 1870, 25). Aside from any refineries that were later to be
merged into Standard Oil, there were eight firms that matched the relevant criteria, with a
total of 92 employees, or an average of 11.5 each. Comparison of names of other firms
derived both from the census and the directories, with the extensive but not completely
comprehensive Bradstreet’s list, revealed a further 18 oil refining companies in 1870, for
which no newspaper derived employment figures are extant (Bradstreet’s 1870). The average employment figure derived above (11.5) was therefore applied to these, yielding a further 207 workers. The final estimate was obtained by summation of the estimated employment in these two refinery groups, the numbers from the manuscript census (193) and a midpoint value (150) from the estimated employment range for Standard Oil given in the previous paragraph. This produced the final figure of (92+207+193+150) = 642, which appears in Table 7. This is more than three times the published census total.

The 1880 enumeration provides multiple further twists to the problem of identifying trends in this sector. The relevant category is ‘oil, lubricating’, which can be found in the published tabulation labeled ‘selected statistics of manufactures’ (U.S. Census Office 1883a, 322-3). According to this table, the industry has now only 5 players, 125 employees and a still modest capitalization of $656,000. However, close comparison of these figures with the manuscript schedules, the published Special Census Report on petroleum and the nearest extant Mercantile Agency tabulation from July 1879 (Mercantile Agency 1879; U.S. Census Office 1884, 186-191), reveals a number of important issues. Firstly, ‘oil, lubricating’ in 1880 is not comparable to the category of ‘coal-oil, rectified’ in the 1870 census. Marginalia from the 1880 schedules distinguish firms counted under the former heading from two other categories, one referred to as ‘petroleum refiners’, the other concerned with varnish manufacture. *Neither of these latter two categories is reported in the published 1880 manufacturing census tabulation.* Secondly, the Standard Oil Company was categorized as a petroleum refiner; hence it does not appear in the published tabulation. Since it reported a capitalization of $3.5 million, an average workforce of 1935 people (including 5 women) and a value of product in excess of $5.65 million, this absence leaves a major gap in the published census record of Cleveland manufacturing activity. Thirdly, the marginalia also indicate that some of the data were to be transferred to the Special Agent dealing with the petroleum
industry (U.S. Census Office 1884). His report names a total of 86 refineries across the USA, giving the city where they were located, but only aggregate national figures on employment and other census variables are provided, so the employment in the sector in specific cities cannot be identified. Examination of the refinery names, in the light of the lists derived from other sources, also reveals that some of the concerns tabulated under the ‘oil, lubricating’ category in the manufacturing census have now been transferred to the refiners category in the Special Report, although the latter makes no mention of this. Using the two sources in conjunction, without detailed cross-referencing to the manuscript schedules, would therefore result in double-counting, e.g. of Merriam and Morgan, well-known in Cleveland as combined paraffin refiners and lubricating oil producers (Cleveland Board of Trade for 1870, 26), who appear in both tabulations.

A different 1881 statistical compilation, made at the behest of the Cleveland Board of Trade, managed to circumvent the reporting limitations of the published census in relation to petroleum refineries, seemingly by obtaining access to advance sheets of the original returns. It therefore published aggregate details of the same six refineries as were listed in the manuscript census, judging by the almost exact correspondence in the employment figures (Cobleigh 1881, 115, 123) (Table 8). Further examination of the Mercantile Agency list from 1879 suggests this was not the complete picture, since a further nine small refineries are found there, making 15 in all (Mercantile Agency 1879). To provide a more complete employment estimate, the average number of workers (18.6) employed by the five small petroleum refineries recorded in the census, excluding Standard Oil, was multiplied by the number of missing refineries to yield the final estimate of employment in this sector of 2195. A similar approach was adopted for the lubricating oil sub-sector, to account for a missing firm found only in the Bradstreet list. The resulting total of both the lubricating oil and
petroleum refinery sub-sectors, which avoids double-counting, is 2351. It would be slightly larger again; if any of the varnish manufacturers were included.

Just as for the car manufacturing sector, this final figure is dramatically greater than that which is obtained by using the population census IND50US code 476 (the OCC and OCC50US variables lack specific codes for refinery workers). Using this industry code, only 447 workers can be identified in Cleveland. Closer examination of their individual entries in both the coded dataset and the occupational transcriptions reveals that all have an occupational description that refers to employment in an oil works of some kind, and 353 of them have an OCC code of 74990 for ‘specified chemical worker’. Most of the remaining workers given a IND50US code of 476 are in various management or clerical positions, but most importantly, only 14 of the 447 total have an OCC code of 81500 for ‘coopers, hoop makers and benders’. It is clear, therefore, that these workers have overwhelmingly not been attributed to the oil industry in the population census, since there are actually a total of 764 workers with an OCC code of 81500 in the city.

The changing relationship of coopers to the refining industry helps explain both the mismatch between the 1880 manufacturing and population census derived figures for the sector, and the very marked rise in Standard Oil’s workforce since the end of the 1860s. It also provides evidence of the earlier general observation that changes in company organization could markedly affect the distribution of employment between sectors. It was virtually a truism that the oil industry had an insatiable demand for barrels, and in 1869 it was claimed that, in addition to his refinery workforce, Rockefeller was indirectly giving employment to another 7-800 men around the city making barrels (Joblin, 1869, 422). This is supported by the published 1870 census, which records 63 independent coopers, with a total workforce of just over 600 (U.S. Census 1872, 712). The larger of these firms, in particular, indicated specifically on the manuscript schedules that they were making barrels for the oil
industry (U.S. Census 1870a). However, during the 1870s Standard Oil removed its backward linkages to the cooperage sector and began manufacturing its own barrels, rather than buying them from other suppliers. An 1878 report describes both different types of barrel-making at the Standard works and wages paid to coopers. The latter are clearly stated to be part of the company workforce by this date (Ohio, Bureau of Labor Statistics 2nd Annual Report for 1878, 220). Not surprisingly, the 1880 tabulation then suggests that the cooperage sector has shrunk dramatically, since only 13 establishments are recorded, employing less than 200 people. Thus, many hundreds of workers had disappeared from the sector between 1870 and 1880 according to the published manufacturing census, but the evidence from the population census shows otherwise (764 coopers). Had Standard Oil been tabulated in accordance with the data in the manuscript schedule, many of these same missing coopers would, of course, have bolstered the oil-refining sector instead.

Accounting for the missing coopers is not sufficient to explain the tenfold increase in employment at Standard Oil during the 1870s. The 1869 report also makes reference to the expenditure of $20-25,000 a year by Rockefeller to pay tradesmen not on the company payroll, for repairs around the refinery complex (Joblin 1869, 422). It is very likely, therefore, that subsequently, much of this work was moved ‘in-house’, in the same way as for the coopers, to produce the same type of generic worker attribution problem, as found on the railroads, i.e. by 1880 there were many tradesmen working for Standard Oil, who did not declare their workplace affiliation.

Although such detailed examples quickly become tiresome, the numerical magnitudes of the errors, omissions and inconsistencies they represent constitute serious problems for accurate interpretation of the data. These problems are effectively insurmountable, using only the census itself, as comparison with a variety of non-census sources is required to identify them and estimate their magnitudes, on a sector by sector and location by location.
basis. This effectively renders the application of general correction or weighting factors
infeasible, unless and until future work finds more regularities in other sectors than has been
found in those investigated here.

A number of distinguished commentators have regrettably been caught by these
problems, without realizing it. For example, in his wider study of midwestern
industrialization, Meyer makes, among others, inter-censal comparisons between 1870 and
1880 of employment concentration in his sector labeled ‘petroleum and coal’ (Meyer 1989,
930), but these are not tenable in the Cleveland context. The same kind of underreporting of
oil-refining is apparent elsewhere in the census, for example in the Pittsburgh statistics for
1880, so this finding is of more general applicability (U.S. Census Office, 1883a, 338). It
also affects the comparisons made by Lamoreaux and Levenstein (2008, Table 1, 35) and
Kim (1999, 5-7) falls into the same data trap in his analysis of the role of factor endowments
in industrial development. The latter uses the 1880 ‘petroleum and coal’ manufacturing
sectors from the census as part of his panel regression analysis by state, although strangely,
while he employs the census data on coal mining, he does not appear to use the
corresponding data from the census special report on petroleum. This provides equivalent
figures for oil wells, which might then have been compared with refinery output, according to
the logic of his analysis (U.S. Bureau of the Census 1884, 1886). Thus his manufacturing
data are incorrect for the petroleum sector (and indeed for transportation) judging by his
Table 2. Yet even if they had been present and correct, his logic would have fallen foul of
the fact that intra-state comparisons are meaningless for oil-refining at that date, since the
vast majority of the crude oil originated in Pennsylvania, but was refined either in Cleveland
or New York.
Conclusions

A detailed investigation of the quality of the US Manufacturing Census 1860-1880 has been undertaken using case study examples from several sectors in the fast-growing city of Cleveland, OH, and comparisons with other industrial cities in surrounding states. These have confirmed that the enumeration limitations first reported by the 1870 census are not worse case scenarios, but rather the norm, at least for these examples. While previous writers have stressed clerical errors and bureaucratic tampering in the tabulation of data for the printed reports, these have not been found to be the most serious or pervasive issues, in terms of potential analytical use of the data. Instead, several other issues have been found to be the most worrying. The first is varying, but substantial levels of under-enumeration, which can easily exceed 50%, coupled with a clear tendency towards the omission of the larger companies across multiple sectors, (and there is further evidence from the primary iron manufacture sector not reported here). This omission affects the manuscript schedules (and hence any digital samples derived from them) almost as much as the printed reports. The second major concern is that inconsistent definitions between census years, and inconsistent application of prevailing definitions within census years of what constituted manufacturing has led to the non-enumeration of those major portions of the railroad industry, which were involved with the construction and maintenance of locomotives and rolling stock. Given the importance of forward and backward linkages associated with the railroad industry during the period (Fishlow 1965), this has major implications for our understanding of the interrelationships between transportation and manufacturing development. Similar inconsistencies, compounded by changes in industrial structure, have been found to affect the oil refining industry. Correcting for these deficiencies shows that the railroads were in fact the leading employment sector in Cleveland in 1860 and 1870, only slipping into second place behind primary metal manufacture in 1880, while refining and associated cooperage
was the third most important sector in both 1870 and 1880 (Healey 2014). Combined railroad and refining-related employment constituted an estimated 25.6% of total railroad and manufacturing workers in the city in 1870 and 22.1% of the much larger equivalent employment base in 1880 (cf. Table 1 in Healey 2014). Using the manufacturing census alone, would have produced corresponding, but erroneous figures of 11.3% and 0.4%.

Thirdly, both the original compilers of the census publications and a number of researchers who have used their tabulations subsequently, have paid too little attention to ensuring, as far as possible, that classificatory categories adopted in different census years were sufficiently similar to permit of a reasonable degree of inter-censal comparability. In consequence, the only element of consistency seems to be in terms of the bias against large companies, but even here, the presence or absence of individual concerns in succeeding censuses may result in tabulated employment and capital levels, which wrongly appear to fluctuate by many hundreds/thousands or millions respectively.

Such large deviations from accurate enumeration of manufacturing activity are likely to be of the same or greater order than the kinds of statistical effects found in quantitative studies using these data, which is hardly an incentive to pursue this kind of investigation. Equally, large enumeration errors can very easily lead to quite false inferences from limited use of census totals in more qualitative studies. In an era where research resources are stretched, such findings will be unwelcome to all and wholly unpalatable to many.

Nevertheless, the only reasonable conclusion to draw is that the manufacturing census can only safely be used as one of a number of types of partial evidence of economic activity, each of which has to be triangulated against the others, in a manner perhaps similar to that undertaken earlier in this paper. The manuscript census has value in providing details of named concerns at specific dates, but neither it nor the published reports provide reliable, consistent and comparable data on the relative size of manufacturing sectors within or
between censuses or on their aggregate inputs and outputs. Development of new
manufacturing datasets that could be used with confidence in, for example, large statistical
panel regressions, would, in the present writer’s view, be an undertaking of enormous
proportions. Much more work than that reported here just for Cleveland would have to be
repeated several hundred-fold across the major urban centers/counties of the United States,
before acceptable estimates of manufacturing activity could be derived, if indeed the
necessary evidence to make such estimates could be found in all cases. As a first step in the
right direction, work has now commenced to identify the locations of all railroad shops and
their approximate establishment dates across the American Manufacturing Belt. This will
provide a first yardstick for systematic, wide area evaluation of the full extent of one of the
more glaring manufacturing census deficiencies identified in this study.

References

Alexander, J.G. 1982. City directories as “ideal censuses”: Slovak immigrants and
Pittsburgh’s early twentieth-century directories as a test case. *The Western Pennsylvania
Historical Magazine* 65(3): 203-220.

Annals of Cleveland. 1850-1876, transcription 1936 -. *Annals of Cleveland, Works Progress
Administration in Ohio. Years 1850-1876, 27 vols*, (approx. 17,000 pages of typescript).
Cleveland: WPA, District Four.

URL: https://mc.manuscriptcentral.com/jhistmeth E-mail: hacker@umn.edu, kenms@umich.edu

Cambridge, MA: Harvard University Press.

Cleveland and Toledo Railroad. 1854 -. *Annual report for the year 1853/4 etc.*

Cleveland Board of Trade. 1866 -. *Annual report of the trade, commerce and manufactures of the city of Cleveland, for the year 1865 etc. Reported to the Board of Trade by J. D. Pickands.* Cleveland: Fairbanks, Benedict and Company.

Cleveland, Columbus and Cincinnati Railroad. 1852 -. *Annual report for the year 1851 etc.*

Cleveland Directory. 1861. *J. H. Williston and Co.'s directory of the city of Cleveland to which is added a business directory for 1861-62.* Cleveland: Ben Franklin Print.

Cleveland Directory. 1866. *Cleveland Leader city directory, for 1866-67, together with a business directory.* Cleveland: Cleveland Leader Publishers.

DLWRR Coal Department. 1860, 1870. *Delaware, Lackawanna and Western Railroad Coal Department Records, Payrolls June 1860, 1870.* Lackawanna Historical Society, Scranton, PA.

Lake Shore and Michigan Southern Railway. 1871-. *Annual report for 1870 etc.*

(http://www.nhgis.org).

Ohio, Commissioner of Railroads. 1868 -. *Annual report of the Commissioner of Railroads and Telegraphs to the Governor of the State of Ohio for the year 1867 etc*. Columbus: State Printer.
Ohio, Commissioner of Statistics. 1857 -. *First etc. annual report of the Commissioner of Statistics to the General Assembly of Ohio*. Columbus: State Printer.

U.S. Census Office. 1865. *Manufactures of the United States in 1860; Compiled from the original returns of the Eighth Census under the direction of the Secretary of the Interior*. Washington: GPO.

URL: https://mc.manuscriptcentral.com/jhistmeth E-mail: hacker@umn.edu, kenms@umich.edu
U.S. Census Office. 1883a. *Vol. 2, Report on the manufactures of the United States at the Tenth Census (June 1, 1880)*. Washington: GPO.

U.S. Census Office. 1884. *Vol. 10, Production, technology and uses of petroleum and its products by S.F. Peckham; The manufacture of coke by J.D. Weeks; Building stones of the United States, and statistics of the quarry industry for 1880*. Washington: GPO.

U.S. Census Office. 1888. *Vol. 22, Report on power and machinery employed in manufactures, embracing statistics of steam and water power used in the manufacture of iron and steel, machine tools and wood-working machinery, wool and silk machinery etc*. Washington: GPO.

List of Tables

Table 1 Categorisation of Within Census Problems

Table 2 Categorisation of Between Census Problems

Table 3 Cleveland 1861 City Directory: Employment Breakdown by Occupation

Table 4 Cleveland 1861 City Directory: Employment Breakdown by Railroad

Table 5 Cleveland 1861 City Directory: Employment Breakdown Summary

Table 6 Cleveland 1860/1: Summary of Employment Estimates by Sector

Table 7 Cleveland 1870: Summary of Employment Estimates by Sector

Table 8 Cleveland 1879/80: Summary of Employment Estimates by Sector
<table>
<thead>
<tr>
<th>Enumeration Process</th>
<th>Tabulation Process</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>In 1870 Walker Report</td>
<td>Manufacturing Census data collection lower priority than Population Census</td>
<td>Atack and Bateman (1999); Walsh (1970)</td>
</tr>
<tr>
<td>Y</td>
<td>Single visit opportunity to collect all required data</td>
<td>‘Massaging’ of data by Washington bureaucrats</td>
</tr>
<tr>
<td>Y</td>
<td>Low level of payment per firm enumerated</td>
<td>Printing Errors (e.g. CA)</td>
</tr>
<tr>
<td>Y</td>
<td>Low remuneration encouraged negligent performance of duties</td>
<td>Absence of surviving documentation of general classification methodologies</td>
</tr>
<tr>
<td>Y</td>
<td>Failure to find small firms hidden in basements and interior courtyards</td>
<td>Specific information loss from classifying multi-product firms into single product categories</td>
</tr>
<tr>
<td>N</td>
<td>Lack of co-operation in reporting by large firms leading to small size bias</td>
<td>Omission of large firms reported on manuscript schedules from tabulations</td>
</tr>
<tr>
<td>Y</td>
<td>Branch and main offices or plant sites in different locations leading to non-enumeration (each site believing the other was reporting)</td>
<td>Incomplete national coverage of surviving manuscript schedules hinders checking of aggregate tabulations</td>
</tr>
<tr>
<td>N</td>
<td>Branch and main offices/plants both reporting leading to double-counting</td>
<td>Incorrect omission of specific standard categories from individual county tabulations</td>
</tr>
<tr>
<td>Y</td>
<td>Understatement of output value by firms close to the $500 reporting threshold, to avoid enumeration</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Inaccurate and inconsistent reporting by firms of capital invested</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Inaccurate reporting of labor inputs</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Geographical (county by county or urban/rural) variations in the severity of the above problems</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Categorisation of Within Census Problems
<table>
<thead>
<tr>
<th>Problem Type</th>
<th>References</th>
<th>Problem Type</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changing universe of eligible firms (changing average firm size)</td>
<td>Hirsch (1978)</td>
<td>Differences in the categories used to subdivide manufacturing</td>
<td>Stuart (1898); This paper</td>
</tr>
<tr>
<td>Changing universe of firm composition (effects of vertical integration etc.)</td>
<td>Chandler (1962, 1977); Warren (1973)</td>
<td>Differences in the practice of assigning firms to supposedly the same categories</td>
<td>This paper</td>
</tr>
<tr>
<td>Changing definition of manufacturing: inconsistencies in the inclusion/exclusion of specific types of activity</td>
<td>Stuart (1898); This paper</td>
<td>Different levels of small size bias</td>
<td>This paper</td>
</tr>
<tr>
<td>Censuses taken at different stages of the business cycle</td>
<td>North (1890)</td>
<td>Geographical inconsistencies in compliance with prevailing classification procedures (i.e. a county may comply in one census but not in another)</td>
<td>This paper</td>
</tr>
<tr>
<td>Lack of systematic reporting of ‘miscellaneous manufacturing expenses’ pre 1890</td>
<td>North (1899)</td>
<td>Changes in county boundaries between censuses</td>
<td>This paper; Long and Tuck Sinko (2010); Gregory and Ell (2007).</td>
</tr>
<tr>
<td>Lack of comparability in measurement of machine capacity</td>
<td>North (1899)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of consistency in measurement of daily and seasonal labor inputs</td>
<td>Atack and Bateman (1992); Atack, Bateman and Margo (2002)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Categorisation of Between Census Problems
<table>
<thead>
<tr>
<th>Potential Train Men</th>
<th>No Railroad Specified Workplace</th>
<th>Non-Railroad Known Workplace</th>
<th>Non-Railroad Vessel Worker</th>
<th>Non-Railroad Identified Total</th>
<th>No Location Given</th>
<th>Railroad Location</th>
<th>Railroad Other Non-Shop Location</th>
<th>Railroad Shop Location</th>
<th>Railroad Identified Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baggage Worker</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>11</td>
<td>26</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>Brakeman</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>62</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>62</td>
</tr>
<tr>
<td>Conductor</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>11</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>Engineer</td>
<td>74</td>
<td>14</td>
<td>7</td>
<td>95</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>52</td>
</tr>
<tr>
<td>Fireman</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>41</td>
</tr>
<tr>
<td>Category Sub-total</td>
<td>140</td>
<td>15</td>
<td>8</td>
<td>163</td>
<td>221</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>228</td>
</tr>
<tr>
<td>Generic Workers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agent</td>
<td>32</td>
<td>44</td>
<td>2</td>
<td>78</td>
<td>27</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Clerk</td>
<td>326</td>
<td>186</td>
<td>3</td>
<td>515</td>
<td>41</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>61</td>
</tr>
<tr>
<td>Laborer</td>
<td>1218</td>
<td>28</td>
<td>0</td>
<td>1246</td>
<td>6</td>
<td>32</td>
<td>0</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Category Sub-total</td>
<td>1576</td>
<td>258</td>
<td>5</td>
<td>1839</td>
<td>74</td>
<td>49</td>
<td>4</td>
<td>2</td>
<td>129</td>
</tr>
<tr>
<td>Generic Tradesmen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blacksmith</td>
<td>217</td>
<td>23</td>
<td>5</td>
<td>245</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Boilermaker</td>
<td>39</td>
<td>7</td>
<td>0</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Carpenter</td>
<td>381</td>
<td>2</td>
<td>116</td>
<td>499</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Carpenter and Joiner</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Joiner</td>
<td>100</td>
<td>0</td>
<td>1</td>
<td>101</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Machinist</td>
<td>158</td>
<td>57</td>
<td>0</td>
<td>215</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>Mason</td>
<td>157</td>
<td>0</td>
<td>0</td>
<td>157</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Mechanic</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Painter</td>
<td>172</td>
<td>12</td>
<td>1</td>
<td>185</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tinner</td>
<td>76</td>
<td>0</td>
<td>0</td>
<td>76</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Category Sub-total</td>
<td>1358</td>
<td>102</td>
<td>123</td>
<td>1583</td>
<td>9</td>
<td>13</td>
<td>1</td>
<td>22</td>
<td>45</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Overall Sub-total</td>
<td>3074</td>
<td>375</td>
<td>136</td>
<td>3585</td>
<td>304</td>
<td>63</td>
<td>5</td>
<td>30</td>
<td>402</td>
</tr>
<tr>
<td>Other Railroad Workers</td>
<td>100</td>
<td>65</td>
<td>0</td>
<td>13</td>
<td>178</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>404</td>
<td>128</td>
<td>5</td>
<td>43</td>
<td>580</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3
Cleveland 1861 City Directory: Employment Breakdown by Occupation
<table>
<thead>
<tr>
<th>Railroad Company</th>
<th>No. of Identified Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleveland, Columbus and Cincinnati RR (CCCRR)</td>
<td>182</td>
</tr>
<tr>
<td>Cleveland, Painesville and Ashtabula RR (CPARR)</td>
<td>113</td>
</tr>
<tr>
<td>Cleveland and Toledo RR (CTRR)</td>
<td>81</td>
</tr>
<tr>
<td>Cleveland and Pittsburgh RR</td>
<td>73</td>
</tr>
<tr>
<td>Cleveland and Mahoning RR</td>
<td>23</td>
</tr>
<tr>
<td>CCCRR/CPARR Jointly</td>
<td>17</td>
</tr>
<tr>
<td>CCCRR/CTRR Jointly</td>
<td>3</td>
</tr>
<tr>
<td>Other Railroads</td>
<td>16</td>
</tr>
<tr>
<td>Railroad not named*</td>
<td>72</td>
</tr>
<tr>
<td>Total</td>
<td>580</td>
</tr>
</tbody>
</table>

* Includes one ambiguously abbreviated name

Table 4 Cleveland 1861 City Directory: Employment Breakdown by Railroad
<table>
<thead>
<tr>
<th>Category</th>
<th>Estimated</th>
<th>Identified</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Railroad Men</td>
<td>Railroad Men</td>
<td>Total</td>
</tr>
<tr>
<td>Train Men</td>
<td>93</td>
<td>228</td>
<td>321</td>
</tr>
<tr>
<td>Generic Workers</td>
<td>236</td>
<td>129</td>
<td>365</td>
</tr>
<tr>
<td>Generic Tradesmen</td>
<td>440</td>
<td>45</td>
<td>485</td>
</tr>
<tr>
<td>Other Railroad Men</td>
<td>178</td>
<td>178</td>
<td>178</td>
</tr>
<tr>
<td>Column Total</td>
<td>769</td>
<td>580</td>
<td>1349</td>
</tr>
<tr>
<td>Grand Total</td>
<td></td>
<td></td>
<td>1349</td>
</tr>
</tbody>
</table>

Table 5
Cleveland 1861 City Directory: Employment Breakdown Summary
Table 6 Cleveland 1860/1: Summary of Employment Estimates by Sector

<table>
<thead>
<tr>
<th>Sector</th>
<th>Manuscript Manufacturing Census</th>
<th>Printed Manufacturing Census</th>
<th>Estimated from Newspaper Sources</th>
<th>1861 City Directory Identified Workers Only</th>
<th>Estimated Total Workers based on 1861 City Directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Shops</td>
<td>N/A</td>
<td>Not Reported</td>
<td>450-475</td>
<td>43</td>
<td>N/A</td>
</tr>
<tr>
<td>Total Railroad Employees</td>
<td>N/A</td>
<td>Not Reported</td>
<td>900</td>
<td>580</td>
<td>1349</td>
</tr>
<tr>
<td>Car Manufacture</td>
<td>N/A</td>
<td>30</td>
<td>N/A</td>
<td>14*</td>
<td>N/A</td>
</tr>
<tr>
<td>Coal Oil Refining</td>
<td>N/A</td>
<td>3</td>
<td>N/A</td>
<td>8</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* occupation of 'car builder' only, none give any employment location
N/A data not available

Printed census figures from U.S. Census Office (1865, 447)

For sources of data and calculations pertaining to figures in columns 3-5, see text.
<table>
<thead>
<tr>
<th>Sector</th>
<th>Manuscript Manufacturing Census</th>
<th>Printed Manufacturing Census</th>
<th>Estimated using census and/or other sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Shops</td>
<td>960</td>
<td>960</td>
<td>1360</td>
</tr>
<tr>
<td>Total Railroad Employees</td>
<td>N/A</td>
<td>Not Reported</td>
<td>2750</td>
</tr>
<tr>
<td>Car Manufacture</td>
<td>N/A</td>
<td>10</td>
<td>400*</td>
</tr>
<tr>
<td>Oil Refining</td>
<td>193</td>
<td>209</td>
<td>642</td>
</tr>
</tbody>
</table>

* McNairy and Claflen car building and bridge building employment combined total

Printed census figures from U.S. Census Office (1872, 712)

For sources of data and calculations pertaining to final column figures, see text.

Table 7 Cleveland 1870: Summary of Employment Estimates by Sector
<table>
<thead>
<tr>
<th>Sector</th>
<th>Manuscript Manufacturing Census</th>
<th>Printed Manufacturing Census</th>
<th>Estimated using population census (excl. E. Cleveland)</th>
<th>Combined Estimate from Bradstreet and Manufacturing Census</th>
<th>Cleveland Board of Trade Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Shops</td>
<td>Not Reported</td>
<td>Not Reported</td>
<td>1958</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Total Railroad Employees</td>
<td>N/A</td>
<td>N/A</td>
<td>3832</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Car Manufacture</td>
<td>213</td>
<td>216</td>
<td>40*</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Oil, Lubricating</td>
<td>125</td>
<td>125</td>
<td>N/C</td>
<td>156</td>
<td>N/A</td>
</tr>
<tr>
<td>Petroleum Refining</td>
<td>2028</td>
<td>Not Reported</td>
<td>447</td>
<td>2195</td>
<td>2027</td>
</tr>
</tbody>
</table>

N/A not available

N/C not calculated - subset of workers cannot be distinguished from other oil refinery workers

* Not including unspecified car shop workers

Printed census figures from U.S. Census Office (1883a, 322-3); see text for sources and calculations for figures in columns 3-5.

Table 8 Cleveland 1879/80: Summary of Employment Estimates by Sector