Zircon LA-ICPMS geochronology of the Cornubian Batholith, SW England

ERIKA R. NEACE¹, R. DAMIAN NANCE¹*, J. BRENDAN MURPHY², PENEOPE J.
LANCASTER³ & ROBIN K. SHAIL⁴

¹Department of Geological Sciences, Ohio University, Athens, Ohio 45701, USA
²Department of Earth Sciences, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
³School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL, UK
⁴Camborne School of Mines, College of Engineering, Mathematics & Physical Sciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK

*Corresponding author (e-mail: nance@ohio.edu)

Abstract

Available U–Pb age data for the Cornubian Batholith of SW England is based almost entirely on monazite and xenotime, and very little zircon U–Pb age data has been published. As a result, no zircon inheritance data is available for the batholith, by which the nature of the unexposed basement of the Rhenohercynian Zone in SW England might be constrained.

Zircon LA-ICPMS data for the Cornubian Batholith provides Concordia ages (Bodmin Moor granite: 316 ± 4 Ma, Carnmenellis granite: 313 ± 3 Ma, Dartmoor granite: ~310 Ma, St. Austell granite: 305 ± 5 Ma, and Land’s End granite: 300 ± 5 Ma) that are consistently 20-30 Ma older than previously published emplacement ages for the batholith and unrealistic in terms of geologic relative age relationships with respect to the country rock. This discrepancy is likely as a consequence of minor pre-granitic Pb inheritance. Several of the batholith’s granite plutons
contain a component of late-Devonian inheritance that may record rift-related, lower crustal
melting or arc-related magmatism associated with subduction of the Rheic Ocean. In addition,
the older granites likely contain Mesoproterozoic inheritance, although the highly discordant
nature of the Mesoproterozoic ages precludes their use in assigning an affinity to the
Rhenohercynian basement in SW England.

Keywords: Cornubian Batholith, zircon geochronology

Introduction

SW England is host to a variety of Palaeozoic igneous and metasedimentary rocks, the
complex tectonic history of which is related to the Devonian-Carboniferous closure of the Rheic
Ocean (e.g., Floyd et al., 1993; Leveridge & Hartley, 2006; Shail & Leveridge, 2009). Assigned
to the European Rhenohercynian Zone (Fig. 1a), these rocks are thought to represent the
northern (Avalonian) margin of the Rheic Ocean and their deformation reflects the Variscan
collision between Gondwana and Laurussia (e.g., Nance et al., 2010). The Cornubian Batholith,
one of the largest granite bodies in the United Kingdom, was emplaced into these deformed
Devonian and Carboniferous rocks following the cessation of Variscan convergence. It
underlies much of the counties of Cornwall and Devon, and crops out in six major plutons and a
larger number of smaller, satellite bodies that extend at least 250 km WSW from Dartmoor to
west of the Isles of Scilly (Edmonds et al., 1975; Floyd, et al., 1993).

The Cornubian Batholith and adjacent country rocks host a variety of magmatic-
hydrothermal mineral deposits that have been exploited since antiquity (e.g., Penhallurick,
1986), primarily for tin and copper, but also tungsten, arsenic, zinc, silver, cobalt, lead and other
metals (Dines, 1956; Le Boutillier, 2003). The area is frequently used as a model for magmatic-
hydrothermal vein mineralization (e.g., Dewey, 1925; Hosking, 1950, 1962; Hawkes, 1974;
Moore, 1975; Darbyshire & Shepherd, 1985; Jackson et al., 1989) and has contributed
significantly to the understanding of ore forming processes.

The batholith is considered to have been emplaced during the Early Permian based on
both Rb/Sr data (ca. 280-290 Ma; Darbyshire & Shepherd, 1985) and the U–Pb ages of
monazite and xenotime (ca. 274-294 Ma; Chesley et al., 1993; Chen et al., 1993). However,
because the granites are S-type and were produced by melting of a source with a significant
sedimentary component, these early U–Pb isotopic studies largely avoided analyzing zircons,
since they were expected to contain a major inherited component. As a result, little is known of
the zircon geochronology of the batholith and no data is available on the nature of its crustal
source as revealed by zircon inheritance.

We present here the results of a new U–Pb LA-ICPMS study of igneous zircons from
each of the five major mainland plutons of the Cornubian Batholith and discuss the implications
of these data for the age and inheritance of the batholith.

Regional Setting

The geology of SW England is dominated by Devonian and Carboniferous sedimentary
strata and minor rift-related volcanic units that together constitute a passive margin succession
within the European Rhenohercynian zone (Holder & Leveridge, 1986; Matte, 2001; Shail &
Leveridge, 2009; Nance et al., 2010; Strachan et al., 2014). This zone, which is thought to be
floored by Avalonian crust (Franke, 2000; Matte, 2001; Landing 2004), extends from the
Bohemian massif of central Europe (Franke, 1989), westwards through SW England (Floyd,
around the Ibero-Armorican arc to lithologically similar rocks in the South Portuguese Zone of southern Iberia that are traditionally correlated with those of SW England (Andrews et al., 1982; Matte, 1986; Franke, 1989; Eden & Andrews, 1990; Floyd et al., 1993; von Raumer et al., 2003; Braid et al., 2012).

In SW England, the succession was likely developed in a marginal basin on the northern flank of the Rheic Ocean (e.g., Shail & Leveridge, 2009), and was deformed and metamorphosed at low- to medium-grade during the late Devonian-early Carboniferous when closure of the Rheic Ocean, as a result of its subduction beneath Avalonia (e.g., Quesada, 1998; Nance et al., 2010; Braid et al., 2011), led to the development of a north-vergent Variscan fold-thrust belt (Edmonds et al., 1975; Shackleton et al., 1982; Franke, 1989). The succession is overthrust by the ca. 397 Ma (Clark et al., 1998) Lizard ophiolite to the south, and is post-tectonically intruded by the early Permian (ca. 274-294 Ma; Chen et al., 1993; Chesley et al., 1993) plutons of the Cornubian Batholith, the generation and emplacement of which was contemporaneous with extensional reactivation of the Rhenohercynian suture (Holder & Leveridge, 1994; Shail & Wilkinson, 1994; Shail & Alexander, 1997; Shail et al., 2003; Shail & Leveridge, 2009).

Cornubian Batholith

The most voluminous igneous rocks of SW England are the granites of the Cornubian Batholith. These underlie the counties of Devon and Cornwall and form part of a single, post-orogenic batholith within the external zone of the Variscan fold-thrust belt (Floyd et al, 1993; Le Boutillier, 2003). The batholith is exposed as an ENE-trending array of plutons that extends at least 250 km and includes (from east to west) the granites of Dartmoor, Bodmin Moor, St.
Austell, Carnmenellis, Land's End and the Isles of Scilly (Chen et al., 1993; Chesley et al., 1993) (Fig. 1b). The plutons crosscut the metasedimentary rocks of the Rhenohercynian passive margin succession following their deformation during Variscan convergence (Exeley & Stone, 1982; Chappell & Hine, 2006). The youngest deformed strata are Pennsylvanian (Moscovian) approximately 307-315 Ma in age (Gradstein et al., 2012).

The batholith is traditionally interpreted to be the product of crustal thickening caused by the collision of Gondwana and Laurussia (Floyd et al, 1993), which closed the Rheic Ocean and led to the formation of Pangaea (e.g., Nance et al., 2010). A predominantly lower crustal source for the peraluminous granites is supported by initial $^{87}\text{Sr}^{86}\text{Sr}$ ratios of 0.710–0.716 and ε_{Nd} values that range from -4.7 to -7.1 (Darbyshire & Shepherd, 1994); a minor mantle component is suggested by ε_{Nd} data, enclave compositions (Stimac et al., 1995) and the spatial association of the batholith with coeval lamprophyres (Leat et al., 1987; Thorpe, 1987) recently dated ($^{40}\text{Ar}^{39}\text{Ar}$ on phlogopite) at between ca. 293.6 and 285.4 Ma (Dupuis et al., 2015). The basement underlying the batholith is unexposed, but is widely considered to be Avalonian (Franke, 1989; von Raumer et al., 2003) and part of the lower plate relative to the SE-dipping Rhenohercynian / Rheic suture imaged on offshore deep seismic reflection profiles (Shail & Leveridge, 2009).

More recent work indicates that Early Permian granite emplacement and mineralization primarily occurred during the latter stages of a regional NNW-SSE extensional regime (D_3) that succeeded Variscan convergence in the latest Carboniferous (Alexander & Shail, 1995, 1996; Shail & Alexander, 1997; Shail & Leveridge, 2009). Extensional reactivation of the Rhenohercynian suture brought about exhumation of the lower plate (SW England) and was accompanied by mantle partial melting. The resultant underplating and/or lower crustal
emplacement of lamprophyric and basaltic magmas into an already hot lower crust was sufficient to initiate substantial crustal partial melting (Shail & Wilkinson, 1994; Shail et al., 2003). Charoy (1986) concluded that anatexis occurred by partial melting of pelitic rocks at approximately 7-8 kbar and 800 °C in the lower or intermediate crust.

Based on gravity modeling, the batholith has a tabular shape originally estimated to be ~13.5 km thick (Willis-Richards & Jackson, 1989). More recently, the thickness has been revised to 5-8 km for the Bodmin Moor, St. Austell and Carnmenellis granites and 10 km for the Dartmoor granite (Taylor, 2007), resulting in an estimated batholith volume of 40,000 km³ (Williamson et al., 2010).

The batholith has been extensively studied in connection with fractionated, high-grade, high heat-flow granitic terranes and as a model for tin mineralization and late-stage alteration associated with acidic magmatism (Floyd et al., 1993). It has been heavily mineralized as the result of hydrothermal activity (Dines, 1986; Floyd et al, 1993; Chen et al., 1993), producing many mineral ores that have been extensively mined for millennia (Penhallurick, 1986).

Available age data for the Cornubian Batholith includes Rb/Sr geochronology by Darbyshire & Shepherd (1985, 1987), and U–Pb and ⁴⁰Ar/³⁹Ar dating by Chesley et al. (1993), Chen et al. (1993). Based on Rb/Sr data, Darbyshire & Shepherd (1985) placed granite emplacement at ca. 290-280 Ma. Chesley et al. (1993), using U–Pb on monazite and xenotime, and ⁴⁰Ar/³⁹Ar on muscovite and biotite, obtained emplacement ages of ca. 275-300 Ma. Chen et al. (1993) obtained similar results using U–Pb on monazite and ⁴⁰Ar/³⁹Ar on muscovite and biotite. Their data, along with Clark et al. (1994) suggested that the emplacement of the plutons of the Cornubian Batholith was diachronous and ranged in age from 293.1 ± 1.3 Ma (Carmmenellis granite) to 275 ± 1.4 Ma (Land’s End granite). Published zircon age data is
limited to three discordant $^{206}\text{Pb}/^{238}\text{U}$ ages in the range 276-281 Ma from the St. Austell granite (Chesley et al., 1993).

Methods

Approximately 10 kg of rock were collected from each of the five mainland plutons (Dartmoor, Bodmin Moor, St. Austell, Carnmenellis and Land’s End) of the Cornubian Batholith and prepared at the University of Portsmouth (UoP), UK. Thin sections for each pluton were made at UoP, then photographed and point-counted at 0.3 mm intervals using a Nikon Labophot2 petrographic microscope at Morehead State University in Morehead, Kentucky, USA.

Zircons were separated from each sample using traditional methods at UoP. After jaw-crushing, the 400–75 µm size fraction was collected after disk milling at the British Geological Survey, Nottingham, UK. Further processing through a Wilfley table, Frantz magnetic separator and LST Fastfloat heavy liquid separation isolated the heavy mineral fraction. Zircons were then hand-picked, mounted into epoxy, and polished to half-height. Each grain was examined in cathodoluminescence (CL) imaging using a JEOL JSM-6060LV scanning electron microscope to identify relevant growth zoning and contaminating features (e.g., cracks or inclusions).

U–Pb ages were measured by laser ablation quadrupole inductively coupled plasma mass spectrometry (LA-Q-ICP-MS) at UoP following Jeffries et al. (2003), using an Agilent 7500cs coupled to a New Wave Research UP-213 Nd:YAG laser. A 30 µm spot was rastered along a 45–60 µm line. Grains were analyzed using the ribbon method to avoid any analytical bias towards ‘nice’ grains (e.g., Mange & Maurer, 1992).
Ratios were calculated using an in-house spreadsheet based on LamTool (Košler et al., 2008), normalized to GJ-1. All uncertainties were propagated in quadrature and no common Pb correction was undertaken. Average $^{206}\text{Pb}/^{238}\text{U}$ and $^{207}\text{Pb}/^{206}\text{Pb}$ ratios for GJ-1 were 0.09760±0.00197 and 0.06013±0.00145 (n=174, 2SD), respectively, consistent with published values (Jackson et al., 2004). Plešovice, normally measured as the internal standard, was used up shortly before the analyses in this work were undertaken, necessitating the use of GJ-1 as internal standard as well. The resulting $^{206}\text{Pb}/^{238}\text{U}$ and $^{207}\text{Pb}/^{206}\text{Pb}$ ratios were 0.09749±0.00193 and 0.06009±0.00145 (n=65, 2SD), respectively. In the 11 days prior to this work, analysis of Plešovice as the internal standard yielded $^{206}\text{Pb}/^{238}\text{U}$ and $^{207}\text{Pb}/^{206}\text{Pb}$ ratios of 0.05457±0.00270 (n=93, 95%) and 0.05342±0.00203 (n=93, 2SD), respectively, consistent with published values (Sláma et al., 2008).

Results

U–Pb data are presented in Tables 1–5 and plotted on Concordia diagrams in Figures 4, 8, 9, 14, 18, 23. Concordia ages were calculated from concordant (calculated concordance between 80–120%) rim and whole grain analyses, interpreted to record the same growth zone event. A Concordia age for the Dartmoor sample could not be calculated due to an insufficient number of concordant rim analyses. Instead, all data from this sample are plotted to indicate the overall discordant array which intersects the Concordia curve at ~310 Ma.

The Land’s End sample was of a fine-grained muscovite-biotite granite. In thin-section, several instances of oxidation were noted and nearly all feldspar grains were heavily sericitised. Chlorite was also present, probably replacing biotite. No evidence of substantial weathering or alteration was noted in the thin sections for any of the other four plutons. The Carnmenellis,
Bodmin Moor, Dartmoor, and St. Austell granite thin sections were all of coarse-grained megacrystic biotite granite, which is consistent with other mineralogical studies of the Cornubian Batholith (Hawkes & Dangerfield, 1978; Dangerfield & Hawkes, 1981). The large grain sizes of these four plutons resulted in count totals below 2000, the lowest count being 334 for the St Austell granite, which may not have produced an accurate modal percentage or classification for these granites. Biotite megacrysts as large as 5 mm as well as quartz and potassium feldspar megacrysts as large as 6 mm in the form of perthite were present in the St. Austell granite. Megacrysts were slightly smaller in the Carnmenellis, Bodmin Moor and Dartmoor granites, at < 5 mm. The grains for each of these four plutons were mostly euhedral. A few opaque minerals were found in each of the thin-sections, with the highest modal percentage of 0.74% in the St. Austell granite and the lowest modal percentage of 0.12% in the Bodmin Moor granite.

Dartmoor Granite

Sample EN13DM-MV is a megacrystic biotite granite from Merrivale Quarry (Ordnance Survey grid reference SX 546751) and comprises K-feldspar (22.5%), quartz (39.5%), plagioclase (albite 20.3%), biotite (9.8%), muscovite (6.6%), and accessory sphene, apatite, and zircon. A total of 42 zircon grains were analyzed. Figure 2 displays thin section photos of biotite with halos of radiation damage from zircon grains. In CL these proved to be euhedral or euhedral fragments (most >200 µm in length) with well-defined igneous zoning (Fig. 3). These grains yielded $^{206}\text{Pb}/^{238}\text{U}$ ages in the range ca. 468-297 Ma (Ordovician-Permian), but all are highly discordant (Table 1). A Concordia plot was not generated because insufficient analyses fitted the criteria for inclusion. This may reflect some disturbance of the granite, evidenced by
the dark, unzoned rims of the zircon grains from this sample under CL (Fig. 3), as well as the large number of discordant grains. A Tera-Wasserburg plot of the data (Fig. 4) suggests a crystallization age of ca. 310 Ma, although this can only be considered an approximation.

Figure 5 is a scatter plot of the Th/U ratios and the $^{206}\text{Pb} / ^{238}\text{U}$ ages for the Dartmoor granite. Th/U ratios for the Dartmoor granite range from 0.05 – 0.7.

Bodmin Moor Granite

Sample EN13BM-DL is a megacrystic biotite granite from the DeLank Quarry (OS grid reference SX 101753) and comprises K-feldspar (20.6 %), quartz (42.3 %), plagioclase (albite 18.2 %), biotite (11.9 %), muscovite (6.9 %), and accessory apatite, with some sericite replacement of albite. A total of 44 zircon grains were analyzed. Figure 6 displays thin section photos where darkened halos within biotite indicate the presence of radioactive zircon grains. In CL these proved to be euhedral and elongate, with lengths ranging from $<$100 μm to $>$200 μm and well-defined igneous zonation (Fig. 7). These grains yielded $^{206}\text{Pb} / ^{238}\text{U}$ ages in the range ca. 413-294 Ma (Devonian-Permian), but most are highly discordant (Table 2). Five concordant grains yielded a Concordia age of 316±4 Ma, which is taken as the best estimate for the age of crystallization (Fig. 9). Four concordant zircons with Concordia age of 371.5 ± 12 Ma are interpreted to be inherited (Fig. 8). Figure 10 is a scatter plot of the Th/U ratios and the $^{206}\text{Pb} / ^{238}\text{U}$ ages of the Bodmin Moor granite. Figure 11 is a scatter plot of this data that excludes an extreme Th/U outlier to present a better general representation of this data for the Bodmin Moor granite. Th/U ratios for the Bodmin Moor granite range from 0.1 – 27.5.

St Austell Granite
Sample EN13SA-LUX is a megacrystic biotite granite from the Luxulyan Quarry (OS grid reference SX 053590) and comprises K-feldspar (12.9 %), quartz (43.7 %), plagioclase (albite 17.7 %), biotite (11.7 %), muscovite (6.3 %), and accessory apatite, zircon, sphene, cordierite, and chlorite with some sericite replacement of albite. A total of 56 zircon grains were analyzed. Figure 12 displays photos of biotite in thin section with similar dark halos of radiation damage from radioactive zircons to those seen in the Dartmoor and Bodmin Moor granites. In CL these zircons formed elongate euhedral crystals and blocky euhedral grains, ranging in length from <100 µm to >300 µm with clear igneous zonation (Fig. 13). These grains yielded \(^{206}\text{Pb}/^{238}\text{U}\) ages in the range ca. 344-242 Ma (Carboniferous - Triassic), but are mostly highly discordant (Table 3). Nine concordant grains yielded a Concordia age of 305 ± 5 Ma (Fig. 14), which is taken as the best estimate for the age of crystallization. Figure 15 is a scatter plot of the Th/U ratios plotted against the \(^{206}\text{Pb}/^{238}\text{U}\) ages. Th/U ratios for the St Austell granite range from 0.04 – 2.3 (Fig. 15).

Carnmenellis Granite

Sample EN13CARN-ROSE is a megacrystic biotite granite from the Rosemanowes Quarry (OS grid reference SW 735346) and comprises K-feldspar (25.8 %), quartz (34.7 %), plagioclase (albite 24.4 %), biotite (6.5 %), muscovite (4.8 %), and accessory apatite, zircon, and sphene with some sericite replacement of albite. A total of 43 zircon grains were analyzed. Figure 16 also presents thin section photos that display halos of radiation damage within biotite (Figure 16c is a 40x photo of a zircon grain in cross-section where the halo can be clearly seen). In CL these grains were elongate or blocky, euhedral grains with clear igneous zoning, and ranged in size from <100 µm to >300 µm (Fig. 17). All but two of these grains yielded
\(^{206}\text{Pb}/^{238}\text{U} \) ages in the range ca. 573 - 285 Ma (Neoproterozoic - Permian), but most are highly discordant (Table 4). Two grains yielded much older \(^{206}\text{Pb}/^{238}\text{U} \) ages of ca. 928 and 1631 Ma, indicating inheritance. Eight concordant grains yielded a Concordia age of 313 \(\pm \) 3 Ma (Fig. 18), which is taken as the best estimate for the age of crystallization. Th/U ratios for the Carnmenellis granite range from 0.01 – 1.7 (Figs. 19, 20). Figure 19 includes the zircons that are interpreted to be inherited to display all of the data used for the Carnmenellis granite. Figure 20 excludes the two inherited ages so that the relationship between the remaining grains can be seen more clearly.

Land’s End Granite

Sample EN13LE-CAD is a fine-grained biotite-muscovite granite from the Castle-an-Dinas Quarry (OS grid reference SW 484343) and comprises K-feldspar (23.7 %), quartz (38.8 %), plagioclase (albite 22.6 %), biotite (7.1 %), muscovite (6.8 %) and accessory zircon, sphene, cordierite and chlorite, with significant sericite replacement of feldspar. Figure 21 shows thin section photos of the Land’s End granite, although no halos of radiation damage were observed in thin section. The sample yielded only 5 zircon grains. In CL (Fig. 22) these proved to be either small, elongate euhedral grains or large, blocky euhedral grains, with sizes ranging between 100 \(\mu \text{m} \) and 200 \(\mu \text{m} \). Igneous zoning is clearly apparent in the larger grains. These grains yielded \(^{206}\text{Pb}/^{238}\text{U} \) ages in the range ca. 334-294 Ma (Carboniferous - Permian), but most are highly discordant (Table 5). Three concordant grains yielded a Concordia age of 300 \(\pm \) 5 Ma (Fig. 23), which is taken as the best estimate for the age of crystallization. Figure 24 is a scatter plot of the Th/U ratios and the \(^{206}\text{Pb}/^{238}\text{U} \) ages for the Land’s End granite, although
the small number of analyses for this granite may not be entirely representative of the zircon population. Th/U ratios for the Land’s End granite range from 0.1 – 0.4.

Discussion

Comparison with TIMS U–Pb monazite/xenotime data

In Figure 25, the LA-ICPMS U–Pb zircon ages from this study are presented as relative age probability plots in order to summarize the results and highlight variations between the five plutons. The age data are then compared to the TIMS U–Pb monazite and xenotime ages from identical or similar locations reported by Chen et al. (1993) and Chesley et al. (1993) summarized in Table 6 and Figure 26. There is generally a very close agreement between the TIMS U–Pb monazite and xenotime ages for the Carnmenellis, Land’s End and St Austell plutons in these independent earlier studies. In addition, the $^{40}\text{Ar}/^{39}\text{Ar}$ muscovite and biotite cooling ages across these and other plutons of the Cornubian Batholith were shown by both studies to be consistently 3-5 Ma younger than the corresponding U–Pb monazite/xenotime magmatic ages (Chen et al., 1993; Chesley et al., 1993). The U–Pb monazite age of 281 Ma for the Bodmin Moor granite reported by Chen et al. (1993) is anomalously young (less than the corresponding muscovite cooling age), and the 291 Ma U–Pb monazite age of Chesley et al. (1993) is considered more reliable.

Based on the U–Pb zircon Tera-Wasserburg plots (Figs. 4, 8, 9, 14, 18, 23) the five mainland plutons of the batholith are, in order of decreasing age, Bodmin Moor (316 ± 4 Ma, MWSD = 1.2), Carnmenellis (313 ± 3 Ma, MWSD = 0.88), Dartmoor (approx. 310 Ma), St. Austell (305 ± 5 Ma, MSWD = 2.1), and Land’s End (300 ± 5 Ma, MWSD = 1.3). The U–Pb zircon data support the U–Pb monazite and xenotime data of Chen et al. (1993) and Chesley et
al. (1993) in suggesting that emplacement of the Cornubian Batholith occurred diachronously. However, whilst there is little evidence of inheritance in the data used to construct the Concordia plots – only those zircon analyses showing no indication of common Pb contamination or Pb loss were included – the zircon ages are consistently 20-30 Ma older than the corresponding U–Pb monazite ages (Fig. 26). The discrepancy between the zircon and monazite age data is a systematic one in that both data sets indicate the Land’s End pluton to be the youngest of the five, and the Bodmin Moor and Carnmenellis plutons to be the oldest.

A possible explanation for this age discrepancy is the lower closure temperature of monazite (≥ 750°C; Dahl, 1997) versus that of zircon and xenotime (≥ 900°C; Dahl, 1997; Liu et al., 2011), which might be expected to produce monazite ages that are slightly younger than the zircon ages from the same granitic body because of the greater length of time required for the monazites to cool to their closure temperature. However, such an explanation would require the magma to have had an unreasonably long crustal residence time of 20-25 Ma.

In many other studies, zircon and monazite ages from the same granite agree within analytical uncertainties (e.g., Kusiak et al., 2014), and some experiments suggest that the closure temperature for Pb in zircon could be similar to that of monazite (e.g., Cherniak and Watson 2003). Indeed, Chesley et al. (1993) presented U–Pb analyses for three zircon fractions from the St Austell granite that indicated broadly similar ages (278-284 Ma) to those of monazites from the same sample (282 Ma). Nevertheless, all of these zircons were discordant and their $^{207}\text{Pb}/^{206}\text{Pb}$ ages ranged between 307-292 Ma, which Chesley et al. (1993) interpreted to be a consequence of the inheritance of pre-granitic Pb.

However, it can be shown on the basis of field relations that the older emplacement ages are geologically unrealistic. Outcrop relations across SW England indicate that emplacement of
the Cornubian Batholith post-dated structures developed during both Variscan convergence and
the initial stages of post-Variscan extensional reactivation of major thrust faults (Alexander &
Shail, 1995; 1996; Shail & Alexander, 1997; Shail & Leveridge, 2009). The LA-ICPMS U–Pb
zircon ages of the oldest (ca. 313-316 Ma) plutons overlap or slightly pre-date the depositional
age (ca. 307-315 Ma; Gradstein et al., 2012) of the youngest (Moscovian) metasedimentary
strata (Bude Formation) in the Culm Basin that was intruded by the batholith. These strata could
not undergo Variscan convergence-related deformation (resulting in 6-8 km of tectonic burial),
followed by post-Variscan extension and exhumation prior to granite emplacement on a
timescale that would render such zircon ages realistic. This implies that the zircon ages are too
old. Furthermore, the Crediton Graben, locally developed upon the exhumed Culm Basin, is
infilled by a latest Carboniferous-Early Permian red-bed succession containing lamprophyre
lavas towards its base dated at 290.8 ± 0.8 Ma (Edwards et al., 1997), that are a robust indicator
of the earliest post-Variscan magmatism in the region (e.g., Dupuis et al., 2015).

Figure 25 also displays the major tectonic and structural events that are directly related
to the emplacement of the Cornubian Batholith (i.e., the closure of the Rheic Ocean and the
resultant Variscan orogeny, the obduction of the Lizard Ophiolite, extension and reactivation of
the Rhenohercynian Suture). The highest age probability for all of the granites except Land’s
End occurs before the period of extension that preceded granite emplacement, during the
closure of the Rheic Ocean. Therefore these ages cannot represent the age of emplacement for
the granites. Given that the U–Pb zircon Concordia age data reported here can be shown to be
anomalously old, the age discrepancy is likely to be a consequence of minor pre-granitic Pb
inheritance.

Zircon inheritance in the Cornubian Batholith
It is surprising that the U–Pb analyses of zircons from the Cornubian Batholith, taken as a whole, provide so little evidence of pre-Permian inheritance. The reason for this paucity of older zircons is uncertain since it is unlikely that entire age populations were missed by our sampling and all indications point to the Cornubian Batholith biotite granites as having been produced by melting of a source with an overwhelming crustal component (e.g. Charoy, 1986; Darbyshire & Shepherd, 1994; Chappell & Hine, 2006). Miller et al. (2003) have suggested that inheritance-poor granites are indicative of high-temperature (>800 °C) magma generation and suggest a magma source that may have been undersaturated with zircon. They also noted that completely inheritance-free granites are always metaluminous or weakly peraluminous, whereas a few of those with minor inherited zircon and the majority of those with significant inherited zircon are strongly peraluminous. Table 7 presents the whole-rock geochemistry data of Stone (2000) for inner and outer granite samples of the Bodmin Moor and Carnmenellis granites. Stone (2000) defines the boundary between the inner and outer granites as the point where tFe2O3 + MgO = 1.8 wt%. These data are used to calculate the variable M in the equation for zircon solubility established by Watson & Harrison (1983):

$$\ln D_{Zr}^{\text{melt}} = -3.8 - [0.85(M - 1)] + \frac{12900}{T},$$ \hspace{1cm} (Eq. 1)

where M is a cation ratio accounting for the dependence of zircon solubility upon SiO2 and peraluminosity of the melt:

$$M = \left(\frac{nNa + K + 2Ca}{Al \cdot Si}\right),$$ \hspace{1cm} (Eq. 2)

and T is temperature in degrees kelvin. Using this data and solving for T (e.g., Miller et al., 2003):
the geothermometer for zircon saturation temperatures in the Bodmin Moor and Carnmenellis granites were calculated (see Table 7) resulting in T_{Zr} temperatures of 727 – 775 °C. According to Miller et al. (2003), T_{Zr} values of 730-780 °C should represent granites with a strong inherited zircon component.

However, zircon inheritance is not entirely absent. A few strongly discordant zircon grains give Mesoproterozoic 207Pb/206Pb ages, although these give no indication as to the nature of the basement and whether or not it has Avalonian affinities. Nance et al. (2015) discuss the possibility that the underlying, unexposed basement of SW England could be a correlative of the Meguma terrane rather than the traditionally assigned Avalon terrane (Franke, 2000; Matte, 2001; Landing 2004; Shail & Leveridge, 2009). While the two discordant Mesoproterozoic ages from this study alone cannot be used to make any suggestion about the nature of the unexposed basement, a few studies have been conducted which provide some limited insight into the basement of SW England. Schofield et al. (2010) also regressed one highly discordant zircon age with a Mesoproterozoic upper limit age of 1648 Ma in the Stanner Hanter complex (Wales, UK). Sandeman et al. (2000) conducted U–Pb analysis of the Kennack Gneiss (which intrudes the Lizard ophiolite to the east of the Cornubian Batholith) that resulted in a Concordia upper intercept of 12900 $\frac{2.95 + 0.85M + \ln\left(\frac{496000}{Zr_{melt}}\right)}{2.95 + 0.85M + \ln\left(\frac{496000}{Zr_{melt}}\right)}$ (Eq. 3) and a lower intercept of 376.4 ± 1.7 Ma. They interpreted the lower intercept as representing the age of emplacement of the Kennack Geniss, and suggested that the upper intercept might correspond to the approximate age of the ancient source of the melt. Their Concordia results were produced from four zircon grains, one highly discordant grain providing a Mesoproterozoic 207Pb/206Pb age of 1389.2 Ma. Although all of these Mesoproterozoic ages
are highly discordant, they document the presence of ancient crustal material in each of these bodies.

Some of the granites, in particular the older plutons, contain a significant component of late Devonian (Frasnian/Famennian) inherited zircons. This is most clearly evident in the 372 ± 12 Ma (MWSD = 1.2) age of the older Concordia plot from the Bodmin Moor granite (Fig. 8). The source of this late Devonian inheritance is problematic since the only exposed igneous rocks of this age in SW England are mafic and thought to be rift-related (Merriman et al., 2000; Shail & Leveridge, 2009), and so are unlikely to contain zircons. It is possible, however, that the zircons were formed during partial melting of the lower continental crust during this rifting event. However, another potential source of late Devonian zircons would be the arc-related plutons associated with the subduction of the Rheic Ocean beneath Avalonia (e.g., Nance et al., 2010; Braid et al., 2011; Quesada, 1998). These are not exposed in SW England, but occur immediately south of the Rhenohercynian Zone farther east, in the Mid-German Crystalline Rise (Zeh et al., 2001), and farther west, in the South Portuguese Zone of southern Iberia (Braid et al, 2010). Upper Devonian granitoid clasts derived from the equivalent of the Mid-German Crystalline Rise occur in the proximal southerly derived Gramscatho Basin succession immediately north of the Lizard Ophiolite (Dörr et al., 1999), although it is difficult to envisage how such material would be incorporated into the continental crust of the lower plate. It is also possible that the late Devonian ages are artifacts of contamination. For example, there is some indication of disturbance within the Dartmoor granite, evidenced by the presence of unzoned rims on zircon grains and highly discordant age data that may suggest common Pb contamination. But these features are not strongly evident in the other granites.
Th/U ratios in zircon can be used as an indicator of the environment in which zircon grew (Rubatto, 2002; Kirkland et al., 2015). Low Th/U ratios (< 0.1) within zircon can be an indication of metamorphic rather than magmatic growth (Rubatto, 2002), while relatively high Th/U ratios may indicate high-grade metamorphism (Wan et al., 2011). Significant lack of zoning within zircon can also indicate metamorphic growth. The Dartmoor granite showed poor zoning in CL, and in seven analyses Th/U ratios were less than 0.1. It is well known that the Cornubian Batholith has been hydrothermally altered, such that metamorphic minerals might be expected to produce ages that are younger than the age of crystallization. Yet the estimated age of 310 Ma for the Dartmoor granite presented here is 30 Ma older than the ~280 Ma ages reported by Chen et al. (1993) and Chesley et al. (1993). The Bodmin Moor granite has Th/U ratios that range between 0.1 – 2.3, with an outlier of 27.5. The St. Austell, Carnmenellis, and Land’s End granites respectively record five, three, and two analyses with Th/U ratios of less than 0.1. The Land’s End granite produced the only scatter plot of Th/U ratios vs. $^{206}\text{Pb} / ^{238}\text{U}$ ages (Figs. 5, 10, 11, 15, 19, 20, 24) with an R^2 value greater than 0.5, and only the Bodmin Moor plot that excludes an outlier (Fig. 11) has an R^2 value greater than 0.01. However, the high R^2 value of the Land’s End granite may be the result of the limited number of analyses, with only 5 data points, and so may not be an accurate representation of a relationship, or lack thereof, between the Th/U ratios and $^{206}\text{Pb} / ^{238}\text{U}$.

Conclusions

LA-ICPMS U–Pb zircon ages for the Cornubian Batholith match previously published age data in suggesting that the Bodmin Moor and Carnmenellis granites are the oldest plutons while the Land’s End granite is the youngest, and that emplacement of the batholith was
diachronous. However, the zircon ages are consistently 20-30 Ma older than previously published U–Pb monazite data (Chen et al., 1993; Chesley et al., 1993). Cross-cutting relations with structures within the batholith’s Devonian-Carboniferous host rocks, the depositional age of which overlaps the reported zircon ages, indicate that the zircon data provide unrealistic emplacement ages.

U–Pb analysis of zircons from the Cornubian Batholith provide little evidence of pre-Permian inheritance. The reasons for this scarcity are uncertain, although inheritance is not entirely absent. Several plutons contain a component of late Devonian inheritance, the source of which is problematic since the only exposed igneous rocks of Devonian age in SW England are mafic and are considered to be rift-related (Merriman et al., 2000; Shail & Leveridge, 2009).

The inheritance may record lower crustal melting during this rifting event, or may be linked to arc-related magmatism that has been associated with subduction of the Rheic Ocean elsewhere in the Rhenohercynian Zone.

These data also include a few grains with Mesoproterozoic $^{207}\text{Pb}/^{206}\text{Pb}$ ages, although these are too discordant to be used to assess the nature of the basement and whether or not it is of Avalonian affinity. However, together with other studies in southern Britain that have produced highly discordant Mesoproterozoic zircon ages they do indicate the presence of an ancient crustal component in the igneous rocks of SW England.

Acknowledgements

This project was supported by the Department of Geological Sciences at Ohio University and by NSERC (Canada) through Discovery grants to JBM. Thanks are also extended to the faculty and staff in the School of Earth and Environmental Sciences at the
University of Portsmouth, the British Geological Survey, and the Department of Earth Systems Science at Morehead State University for the use of their facilities. Thoughtful reviews by Mike Searle and an anonymous reviewer greatly improved the final manuscript.

References

fractionation on a crustal scale. *Resource Geology, 56*, 203-244.

Charoy, B. (1986). The genesis of the Cornubian batholith (South-west England): the example

and independent histories of plutonism and mineralization in the Cornubian Batholith,

Geochemistry 53*, 113-143.

Thermochronology of the Cornubian batholith in southwest England: Implications for
pluton emplacement and protracted hydrothermal mineralization. *Geochimica et
Cosmochimica Acta, 57*, 1817-1835.

Clark, A.H., Chen, Y., Farrar, E., Northcote, B., Wastenays, H.A.H.P., Hodgson, M.J.,
Bromley, A. (1994). Refinement of the time/space relationships of intrusion and
hydrothermal activity in the Cornubian Batholith (abstract). *Proceedings of the Ussher
Society, 8*, 345.

Clark, A.H., Sandeman, H.A., Liu, C., Scott, D.J., Farrar, E., Archibald, D.A., Bromley, A.V.,
and emplacement of the Lizard Ophiolite, SW Cornwall. *Geoscience of South-West

Figure 1: Modified from Pownall et al. (2012). Geological setting of the Cornubian granites within the European Variscides. (A) The Variscan belt of Europe during the Early Carboniferous, modified from Matte (1986) and Franke (1989). (B) Map of the Cornubian granites in the Western Rhenohercynian of SW England, after Shail and Leveridge (2009).
Figure 2: Thin section photos of the Dartmoor granite at 4x magnitude. Notice the dark areas of radiation damage within the biotite. A) Plane-polarized light. B) Cross-polarized light.
Figure 3: SEM images of typical igneous zircons from the Dartmoor granite of the Cornubian Batholith and resulting data. Ellipses indicate analytical locations and % disc indicates discordance at > 10%.
Figure 4: Tera Wasserburg plot of igneous zircon ages from the Dartmoor granite of the Cornubian Batholith.
Figure 5: Scatter plot of Th/U ratios vs. $^{206}\text{Pb}/^{238}\text{U}$ Ages for the Dartmoor granite.
Figure 6: Thin section photos of the Bodmin Moor granite at 4x magnitude. Note the dark area of radiation damage within the biotite at the top of the pictures. A) Plane-polarized light. B) Cross-polarized light.
Figure 7: SEM images of typical igneous zircons from the Bodmin Moor granite of the Cornubian Batholith and resulting data. Ellipses indicate analytical locations and % disc indicates discordance at > 10%.
Figure 8: Tera Wasserburg plot of the older (inherited) igneous zircon ages from the Bodmin Moor granite of the Cornubian Batholith.
Figure 9: Tera Wasserburg plot of the younger igneous zircon ages from the Bodmin Moor granite of the Cornubian Batholith.
Figure 10: Scatter plot of Th/U ratios vs. $^{206}\text{Pb}/^{238}\text{U}$ Ages for the Bodmin Moor granite.
Figure 11: Scatter plot of Th/U ratios vs. $^{206}\text{Pb}/^{238}\text{U}$ Ages for the Bodmin Moor granite, excluding an extreme Th/U outlier.
Figure 12: Thin section photos of the St Austell granite at 4x magnitude. Notice the dark areas of radiation damage within the biotite. A) Plane-polarized light. B) Cross-polarized light.
Figure 13: SEM images of typical igneous zircons from the St Austell granite of the Cornubian Batholith and resulting data. Ellipses indicate analytical locations and % disc indicates discordance at > 10%.
Figure 14: Tera Wasserburg plot of igneous zircon ages from the St Austell granite of the Cornubian Batholith.
Figure 15: Scatter plot of Th/U ratios vs. $^{206}\text{Pb}/^{238}\text{U}$ Ages for the St Austell granite.
Figure 16: Thin section photos of the Carnmenellis granite. Note the dark areas of radiation damage within the biotite. A) Plane-polarized light at 10x magnitude. B) Cross-polarized light at 10x magnitude. C) A zircon in cross-section, cross-polarized light at 40x magnitude.
Figure 17: SEM images of typical igneous zircons from the Carnmenellis granite of the Cornubian Batholith and resulting data. Ellipses indicate analytical locations and % disc indicates discordance at > 10%.
Figure 18: Tera Wasserburg plot of igneous zircon ages from the Carnmenellis granite of the Cornubian Batholith.
Figure 19: Scatter plot of Th/U ratios vs. $^{206}\text{Pb}/^{238}\text{U}$ Ages for the Carnmenellis granite.
Figure 20: Scatter plot of Th/U ratios vs. 206Pb/238U Ages for the Carnmenellis granite with inherited ages excluded.
Figure 21: Thin section photos of the Land’s End granite at 10x magnitude. No halos of radiation damage or zircons were visible, represented by the halo-free biotite in the bottom center. A) Plane-polarized light. B) Cross-polarized light.
Figure 22: SEM images of typical igneous zircons from the Land's End granite of the Cornubian Batholith and resulting data. Ellipses indicate analytical locations and % disc indicates discordance at > 10%.
Figure 23: Tera Wasserburg plot of igneous zircon ages from the Land's End granite of the Cornubian Batholith.
Figure 24: Scatter plot of Th/U ratios vs. 206Pb/238U Ages for the Land's End granite.
Figure 25: Age distribution plot for each of the five major plutons of the Cornubian Batholith shown in relations to the major tectonic and structural events related to its emplacement.
Figure 26: Comparison of LA-ICPMS U–Pb zircon ages (this study) with those from TIMS U–Pb monazite / xenotime (Chesley et al., 1993; Chen et al., 1993).
Table 1: Laser ablation ICPMS U–Pb-Th data and calculated ages for zircons from the Dartmoor granite, Cornwall.
Table 2: Laser ablation ICPMS U–Pb-Th data and calculated ages for zircons from the Bodmin Moor granite, Cornwall.
Table 3: Laser ablation ICPMS U–Pb-Th data and calculated ages for zircons from the St. Austell granite, Devon.

<table>
<thead>
<tr>
<th>Sample</th>
<th>U (ppm)</th>
<th>Pb (ppm)</th>
<th>Th (ppm)</th>
<th>U/Pb</th>
<th>Pb/Th</th>
<th>Th/Pb</th>
<th>Age (Ma)</th>
<th>Error (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>3.28</td>
<td>0.02</td>
<td>0.001</td>
<td>166.9</td>
<td>312.6</td>
<td>593.6</td>
<td>3.28</td>
<td>0.02</td>
</tr>
<tr>
<td>Sample 2</td>
<td>3.28</td>
<td>0.02</td>
<td>0.001</td>
<td>166.9</td>
<td>312.6</td>
<td>593.6</td>
<td>3.28</td>
<td>0.02</td>
</tr>
<tr>
<td>Sample 3</td>
<td>3.28</td>
<td>0.02</td>
<td>0.001</td>
<td>166.9</td>
<td>312.6</td>
<td>593.6</td>
<td>3.28</td>
<td>0.02</td>
</tr>
<tr>
<td>Sample 4</td>
<td>3.28</td>
<td>0.02</td>
<td>0.001</td>
<td>166.9</td>
<td>312.6</td>
<td>593.6</td>
<td>3.28</td>
<td>0.02</td>
</tr>
<tr>
<td>Sample 5</td>
<td>3.28</td>
<td>0.02</td>
<td>0.001</td>
<td>166.9</td>
<td>312.6</td>
<td>593.6</td>
<td>3.28</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Note: The table includes U, Pb, and Th concentrations in ppm, U/Pb, Pb/Th, and Th/Pb ratios, and calculated ages in Ma. The error in the calculated ages is also provided.
Table 4: Laser ablation ICPMS U–Pb-Th data and calculated ages for zircons from the Carnmenellis granite, Cornwall.

Table 5: Laser ablation ICPMS U–Pb-Th data and calculated ages for zircons from the Land’s End granite, Cornwall.
Table 6: Comparison of LA-ICPMS U–Pb zircon ages (this study) with those from TIMS U–Pb monazite / xenotime (Chesley et al., 1993; Chen et al., 1993).