Prospects for clustering and lensing measurements with forthcoming intensity mapping and optical surveys

A. Pourtsidou,1* D. Bacon,1 R. Crittenden1 and R. B. Metcalf2

1Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Road, Portsmouth PO1 3FX, UK
2Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Università di Bologna, viale Bertini Pichat, 6/2, I-40127 Bologna, Italy

Abstract

We explore the potential of using intensity mapping surveys (MeerKAT, SKA) and optical galaxy surveys (DES, LSST) to detect H I clustering and weak gravitational lensing of 21 cm emission in auto- and cross-correlation. Our forecasts show that high-precision measurements of the clustering and lensing signals can be made in the near future using the intensity mapping technique. Such studies can be used to test the intensity mapping method, and constrain parameters such as the H I density Ω_{HI}, the H I bias b_{HI}, and the galaxy-H I correlation coefficient $r_{HI} g$.

Key words: gravitational lensing: weak – cosmology: observations – cosmology: theory – large-scale structure of Universe

1 INTRODUCTION

Intensity mapping (Battye, Davies & Weller 2004; Chang et al. 2008; Loeb & Wyithe 2008; Mao et al. 2008; Peterson et al. 2009; Seo et al. 2010; Ansari et al. 2012; Battye et al. 2013; Switzer et al. 2013; Bull et al. 2015) is an innovative technique that uses neutral hydrogen (H I) to map the large-scale structure (LSS) of the Universe in three dimensions. Instead of detecting individual galaxies like the conventional galaxy surveys, intensity mapping surveys use H I as a dark matter tracer by measuring the intensity of the redshifted 21 cm line across the sky and along redshift, treating the 21 cm sky as a diffuse background, similar to the Cosmic Microwave Background (CMB).

Santos et al. (2015) investigated the potential of the planned Square Kilometre Array1 (SKA) to deliver H I intensity mapping maps over a broad range of frequencies and a substantial fraction of the sky. Detecting the 21 cm signal in auto- and cross-correlation using intensity mapping and optical galaxy surveys is essential in order to exploit the intensity mapping technique, test foreground removal methods, and identify and control systematic effects. This is possible using SKA pathfinders like MeerKAT2 and, as we will show, in many cases high signal-to-noise ratio (S/N) measurements can be achieved.

Cross-correlation between LSS traced by galaxies and 21 cm intensity maps at $z \sim 1$ was first detected using the Green Bank Telescope (GBT) and the DEEP2 optical galaxy redshift survey (Chang et al. 2010); this measurement was improved using the GBT and the WiggleZ Dark Energy Survey (Masui et al. 2013). The auto-power spectrum of 21 cm intensity fluctuations using data acquired with the GBT was used in Switzer et al. (2013) to constrain H I fluctuations at $z \sim 0.8$ and was interpreted as an upper bound on the 21 cm signal because of residual foreground contamination bias.

In this work we present H I detection forecasts for auto- and cross-correlation measurements using intensity mapping surveys with MeerKAT and SKA, and optical galaxy surveys with the Dark Energy Survey (DES)3 and the Large Synoptic Survey Telescope (LSST)4. Our forecasts concern both the H I intensity fluctuations as well as the weak gravitational lensing of 21 cm emission, using the weak lensing intensity mapping method developed in Pourtsidou & Metcalf (2014, 2015). In the following we denote the density fluctuations δ using the subscript H I for 21 cm and g for galaxies. We also denote the lensing convergence κ using the subscript g when it is detected using galaxies and IM when using the intensity mapping method.

In Section 2 we introduce the H I intensity mapping and optical galaxy surveys we are going to use for our clustering and lensing measurements forecasts and analyse their noise properties. In Section 3 we study correlations of the H I observables. We investigate the possibility of measuring the $H I-H I$ power spectrum ($\delta_{HI} \times \delta_{HI}$) with MeerKAT and show forecasts for the lensing convergence power spectrum measurements (κIM and κIM) using MeerKAT/SKA Phase I (SKA1) and the intensity mapping method. Cross-correlation studies are less susceptible to systematic contamination than auto-correlations, and can be observed when the noise

* E-mail: alkistis.pourtsidou@port.ac.uk
1 www.skatelescope.org
2 http://www.ska.ac.za/meerkat/
3 http://www.darkenergysurvey.org/
4 http://www.lsst.org/
levels in the H I observations are relatively high. We study these in Section 4. First we examine the possibility of measuring the δHI, × δg and δHI, × κg correlations using MeerKAT and DES. We then study the δHI, × κO1m correlation with LSST and MeerKAT/SKA1. Finally, we investigate κg, × κO1m with LSST and SKA1.

There are exciting prospects for performing clustering and lensing measurements with the forthcoming intensity mapping and optical surveys. The S/N for many of the cross and auto-spectra we consider is high, so significant progress will occur in the near future, exploiting SKA pathfinders and near-term optical galaxy surveys. The primary goal of our work is to show that it is possible to perform high-precision clustering and lensing studies in three dimensions using the intensity mapping technique. We can use these measurements to calibrate the neutral gas density ΩHI, the HI bias parameter bHI, and the galaxy-HI correlation coefficient rH1g. The current uncertainties in the HI density fraction ΩHI, and the bias bHI, are large; for example, the best constraint obtained so far for the HI density–HI bias combination is ΩHI,bHI = 4.3 ± 1.1 × 10−4 at z = 0.8 (Switzer et al. 2013). Their precise values and evolution across redshift are very important for the S/N of the clustering and lensing measurements, as they determine the amplitude of the HI signal. As shown in Bull et al. (2015), δHI,ΩHI(z) substantially affects the forecasted cosmological constraints using late-time intensity mapping clustering surveys, and it is also very important for the 21cm lensing S/N from post-reionization source redshifts (Pourtsidou & Metcalf 2015). Therefore, it is crucial to utilize near term intensity mapping surveys in order to tightly constrain them. Forecasted constraints on the HI parameters and other cosmological parameters using clustering and lensing measurements will be the subject of future work.

2 THE SURVEYS

2.1 HI INTENSITY MAPPING

We consider a range of HI surveys, focusing on the SKA and its pathfinder MeerKAT. There are two different observing modes we can consider, namely the single-dish mode and the interferometer mode (see Bull et al. 2015 for details). Below we describe the noise properties for both modes.

2.1.1 Single-dish mode

The SKA-MID instrument is primarily an interferometer, but there are also discussions and plans to operate it in single-dish mode as well, in order to collect total power (auto-correlation) data (Santos et al. 2014, 2015; Bull et al. 2015). This is crucial for cosmological measurements with the SKA and the HI intensity mapping technique. For example, arrays with large dishes do not adequately sample BAO scales at low redshifts in interferometer mode, as the largest scale probed is limited by the dish size. Using the single-dish mode and covering a large fraction of the sky ultra large scales can be measured and the constraints obtained are competitive with state-of-the-art optical galaxy surveys like Euclid (Amendola et al. 2013; Santos et al. 2015). MeerKAT is a 64-dish SKA pathfinder on the planned site of SKA1-MID and it will start observing in 2016 with at least 16 dishes. From here onwards, we will refer to its first phase as MeerKAT-16, and its full phase as MeerKAT. The dishes have 13.5 m diameter with number of beams NBeams = 1; the redshift (frequency) range is 0 < z < 1.45 (580 < f < 1420 MHz) for the 21 cm line and the frequency resolution Δf = 50 kHz. The system temperature is taken to be Tsys = 25 K. The sky area and total observing time are determined by the survey strategy. We will consider two strategies: First, we assume a sky area Asky = 1000 deg2 and a total observation time of 3 weeks, and then we repeat the calculation with Asky = 5000 deg2 and a total observation time of 15 weeks.

The noise properties of such measurements have been described in various works (see, for example, Battye et al. (2013)) and depend on the instrumental noise in a given pixel (beam), its volume, and the instrumental response, modelled by the window function W(k). Because the frequency resolution in such surveys is very good (of the order of tens of kHz) we can ignore the instrument response function in the radial direction. However, there is a window function related to the finite angular resolution:

\[W^2(k) = \exp \left(-k^2 \chi(z)^2 \left(\frac{\theta_B}{\sqrt{8 \ln 2}} \right)^2 \right), \]

where \(\chi(z) \) is the comoving radial distance at redshift z and \(\theta_B \sim c/D_{\text{dish}} \) the beam FWHM of a single dish with diameter \(D_{\text{dish}} \) at wavelength \(\lambda \). Considering a redshift bin with limits \(z_{\text{min}} \) and \(z_{\text{max}} \), the survey volume will be given by

\[V_{\text{sur}} = \Omega_{\text{tot}} \int_{z_{\text{min}}}^{z_{\text{max}}} \frac{dV}{d\Omega} = \Omega_{\text{sur}} \int_{z_{\text{min}}}^{z_{\text{max}}} d\Omega \chi(z)^2 \left(\frac{\Omega}{H(z)} \right), \]

and \(\Omega_{\text{sur}} = A_{\text{sky}} \) the sky area the survey scans. The pixel’s volume \(V_{\text{pix}} \) is also calculated from equation (2), but with

\[\Omega_{\text{pix}} \approx 1.13 \theta_B^2 \]

assuming a Gaussian beam, and the corresponding pixel z-limits corresponding to the channel width \(\Delta f \). Finally, the pixel noise \(\sigma_{\text{pix}} \) is given by

\[\sigma_{\text{pix}} = \frac{T_{\text{sys}}}{\sqrt{\Delta f t_{\text{total}}(\Omega_{\text{pix}}/\Omega_{\text{sur}})N_{\text{dishes}}N_{\text{beams}}}}, \]

with \(N_{\text{dishes}} \) the number of dishes.

Here we should note that various systematic effects might lead to an increase of the actual noise in the autocorrelation measurements. For example, in addition to the thermal noise quantified above these observations suffer from correlated (1/f) noise and ground pickup. However, recent work on the subject suggests that these effects can be removed to a large extent (Bigot-Sazy et al. 2015). Other systematics include real beams with sidelobes and mis-calibration which will lead to mode-mixing and thus affect the foreground subtraction.

The MeerKAT radio telescope is a precursor to the SKA telescope and will be integrated into the mid-frequency component of SKA1 (SKA1-MID). As we will see below, MeerKAT can also be used as an interferometer in its own right.

2.1.2 Interferometer mode

The thermal noise power spectrum for an interferometer array is given by (White et al. 1999; Zaldarriaga, Furlanetto & Hernquist 2004)

\[C_\ell^{N} = \frac{(2\pi)^2 T_{\text{sys}}^2}{Bt_{\text{obs}} d^2 \ell}, \]

where B is the total bandwidth of the observation, tobs is the time each visibility is observed, and \(\ell \) is related to the Fourier wavenumber \(u \) by \(\ell = 2\pi u \) – consequently, the Fourier space pixel \(d^2 \ell \) is related to
the square resolution element d^2u by $d^2\ell = (2\pi)^2 d^2u$. The observation time per visibility t_a is given by (Zaldarriaga et al. 2004; Mao et al. 2008)

$$t_a = \frac{A_{\text{dish}}}{\lambda^2} t_0 n(u),$$

where A_{dish} is the area of an individual dish, t_0 is the total observation time and $n(u)$ – or, equivalently, $n(\ell)$ – is the number density of baselines.

Using the above we finally get

$$C_\ell^N = \frac{T^2_{\text{sys}} \text{[FOV]}^2}{B_t n(\ell)}.$$ (7)

Here we have used the fact that the primary beam size (and hence d^2u) is related to the area of the dishes, so we can use the approximation $A_{\text{dish}} = \lambda^2 d^2u$ (Zaldarriaga et al. 2004), and $1/\text{FOV} = A_{\text{dish}}/\lambda^2$ (where FOV is the field of view, and λ is the observing wavelength). The required $n(\ell)$ distributions to calculate the noise of SKA1-MID and MeerKAT in interferometer mode are taken from Bull et al. (2015). The system temperature T_{sys} is the sum of the sky and receiver noise and is approximately given by (the T values are nominal and depend on the sky and the receivers) (Dewdney 2013)

$$T_{\text{sys}} = 28 + 66 \left(\frac{v}{300 \text{ MHz}}\right)^{-2.55} \text{K},$$ (8)

with v the observing frequency. We also note that using the uniform approximation formula for the number density of baselines in equation (7), $n(\ell) \simeq (2\pi)\frac{N_{\text{dish}}}{\ell_0^2}$, we recover the widely known uniform C_ℓ^N formula (see, for example, Zaldarriaga et al. 2004).

The thermal noise of the interferometer is part of the lensing reconstruction noise using the lensing estimator developed in Pourtsidou & Metcalf (2015). In that work the method of 21 cm intensity mapping was used to study gravitational lensing over a wide range of post-reionization redshifts – this extends weak lensing measurements to higher redshifts than are accessible with conventional galaxy surveys. Detecting κ with this method would be an important science achievement of the intensity mapping technique.

Central to this detection is understanding $N_s(\ell)$, the lensing reconstruction noise using the aforementioned method. The expression for $N_s(\ell)$ is rather lengthy, so we will not include it here, but the interested reader is referred to Pourtsidou & Metcalf (2015), Appendix C. To summarize, the lensing reconstruction noise involves the underlying dark matter power spectrum $P_{\delta\delta}$, the H I density $\Omega_{\text{HI}}(z)$ as well as the H I mass (or luminosity) moments up to fourth order and, as already stated, the thermal noise of the instrument C_ℓ^N. Note that in the following we will assume an observation (H I source) redshift $z_c = 1.4$ corresponding to a frequency of 592 MHz, bandwidth $B = 40$ MHz corresponding to $\Delta z \sim 0.15$, total observation time $t_0 = 4000$ h and sky area $A_{\text{sky}} = 25000 \text{ deg}^2$ when we consider MeerKAT and SKA1 in interferometer mode. We remind the reader that the frequency (redshift) range for MeerKAT is $580 < z < 1420$ MHz ($0 < z < 1.45$), while for SKA1-MID $350 < f < 1050$ MHz ($0.35 < z < 3.06$) (Band 1) (Bull et al. 2015).

2.2 Optical galaxy surveys

We consider two photometric surveys: the ongoing Dark Energy Survey (DES) and the planned Large Synoptic Survey Telescope (LSST). DES aims to investigate the nature of the cosmic acceleration and combines four probes of Dark Energy, namely Type Ia Supernovae, Baryonic Acoustic Oscillations (BAOs), galaxy clusters and weak gravitational lensing. LSST is a ground-based, wide-field survey telescope. One of its main goals is to provide multiple probes of dark energy, with the two most powerful being weak gravitational lensing and BAOs.

The DES survey parameters are (Becker et al. 2015)

$$A_{\text{sky}} = 5000 \text{ deg}^2,$$

number density of galaxies $n_g = 10 \text{ arcmin}^{-2}$, redshift range $0 < z < 2$ with median redshift $z_0 = 0.7$. The LSST survey parameters are assumed to be $f_{\text{sky}} = 0.5$, number density of galaxies $n_g = 40 \text{ arcmin}^{-2}$, redshift range $0 < z < 2$ with median redshift $z_0 = 1$ (Abell et al. 2009). The redshift distribution for galaxy surveys like DES and LSST (and Euclid) has the form (Abell et al. 2009; Amendola et al. 2013; Becker et al. 2015)

$$dn/dz \propto z^\alpha \exp[-(z/z_0)^\beta].$$ (9)

For our forecasts we will use the common parametrization $\alpha = 2$, $\beta = 3/2$.

For these surveys, the primary noise for density measurements arises from shot noise, with the shot noise contribution given by

$$P_{\text{shot}} = \frac{1}{(N_g/V_{\text{sys}})},$$ (10)

with N_g the number of galaxies within the redshift bin under consideration.

These optical surveys can constrain weak lensing via shear measurements. The noise associated with the estimated weak lensing convergence is given by $\sigma_\kappa^2/\bar{n}_g$, where σ_κ is the shape noise of each background galaxy and \bar{n}_g is the number density of background galaxies in the chosen source bin. In the following we assume $\sigma_\kappa = 0.3$ (Schmidt et al. 2012).

3 H I ALONE

In this section we investigate auto-correlations of the H I observables, and we show that high signal-to-noise H I detection can be achieved with near-future facilities like MeerKAT-16, hence there are very good prospects for testing and using the intensity mapping method very soon. Lensing of 21 cm sources using the intensity mapping method requires more powerful instruments like the SKA, and heavily depends on the H I density evolution with cosmic time.

3.1 $\delta_{\text{HI}} \times \delta_{\text{HI}}$ with MeerKAT-16

The detection of H I in autocorrelation using the intensity mapping method is the primary science goal of an intensity mapping instrument. The power spectrum of the H I fluctuations, δ_{HI}, is assumed to take the form

$$P_{\delta_{\text{HI}}}(k,z) = \bar{T}(z) T_{\text{HI}}(z)^2 P_{\delta_{\text{HI}}}(k,z),$$ (11)

where $P_{\delta_{\text{HI}}}$ is the underlying dark matter density power spectrum and T_{HI}, the H I bias. The mean H I brightness temperature at redshift z is given by (Battye et al. 2013)

$$\bar{T}(z) = 180 \Omega_{\text{HI}}(z) \frac{H(z)}{H_0} \bar{n}_g(1+z)^2 \text{mK}.$$ (12)

For our forecasts here and in the next sections we will use $b_{\text{HI}}(z)$ from Camera et al. (2013) and assume

$$\Omega_{\text{HI}}(z) = 4 \times 10^{-4}(1+z)^{0.6}$$ (13)

which has been suggested in Crighton et al. (2015). We also use the fitting formula by Smith et al. (2003) for the non-linear power spectrum.
The uncertainty on a power spectrum measurement averaged over a radial bin in k-space of width Δk is (Battye et al. 2013)

$$\delta P_{HI} = \frac{1}{\sqrt{2} V_{sw}} \frac{1}{4\pi k^2 \Delta k} \left[P_{HI} + \sigma_{pix}^2 V_{pix} W^{-2} \right],$$

where the pixel noise, pixel volume and response window function were described in the previous Section.

The results for HI detection in autocorrelation at a central redshift $z_c = 0.1$ with a redshift bin width $\Delta z = 0.2$ using MeerKAT-16 and the two aforementioned survey strategies (three weeks and $A_{sky} = 1000 \text{deg}^2$, 15 weeks and $A_{sky} = 5000 \text{deg}^2$) are shown in Fig. 1, using $\Delta k = 0.01 \text{Mpc}^{-1}$. We plot the cumulative S/N, defined as

$$S/N = \sqrt{\sum \frac{P_{HI}}{\delta P_{HI}}},$$

As can be seen, these measurements are very precise across a wide range of scales and we can use them to calibrate the combination $\Omega_{H1} b_{H1}$. Note that since MeerKAT will cover a wide redshift range $0 < z < 1.45$, we can use tomography to probe the combination $\Omega_{H1} b_{H1}$ at different redshifts.

3.2 $\kappa_{IM} \times \kappa_{IM}$ with MeerKAT/SKA1

The lensing convergence power spectrum from sources at redshift z_s is given by the expression (Kaiser 1992, 1998)

$$C_{\kappa \kappa}(\ell) = \frac{9G^2_{m} H_0^3}{4c^3} \int_0^{z_s} dz \frac{P_{\delta \delta}(k = \ell/\chi, z)}{a^2 H(z)/H_0} \left[\frac{\chi}{\tilde{\chi}} \right]^2,$$

with $\tilde{\chi} = \chi(z_s)$. The uncertainty in the measurement of the power spectrum is

$$\delta C_{\kappa \kappa}(\ell) = \sqrt{\frac{2}{(2\ell + 1) \Delta \ell f_{sky}}} (C_{\kappa \kappa}(\ell) + N_\kappa(\ell)), $$

where $N_\kappa(\ell)$ is the lensing reconstruction noise using the intensity mapping method described in the previous section.

In Pourtsidou & Metcalf (2015) it was found that the S/N is strongly dependent on the possible evolution of the HI mass function. More specifically, it was shown that assuming the no-evolution scenario (which is the most conservative, but also less realistic approach), precise measurements can only be made with an SKA2-like instrument; however assuming instead a model where the HI density $\Omega_{HI}(z)$ increases by a factor of 5 by redshift $z = 3$ and then slowly decreases towards redshift $z = 5$, as suggested by the DLA observations from Peroux et al. (2003) (for more recent results in the redshift range $2 < z < 5$ see Sánchez-Ramírez et al. (2016)), high S/N can be achieved even with SKA1.

In this work we instead use the HI evolution model given by equation (13), which fits observations in a wide redshift range, and we implement this evolution in the ϕ^* parameter of the HI mass function which is locally measured by the HIPASS survey (Zwaan et al. 2003). We also note that in Pourtsidou & Metcalf (2015) the telescope distribution within the array was approximated as uniform for the calculation of the thermal noise component, while here we use the baseline designs from Bull et al. (2015). In Fig. 2 we show results for MeerKAT and SKA1 assuming HI sources are at $z_s = 1.4$ and using $\Delta \ell = 50$.

As we can see, we can detect lensing using the intensity mapping method and SKA1, but using MeerKAT detection in autocorrelation is not possible. However, below we will demonstrate that cross-correlations can enhance the S/N of the lensing measurements.

3.3 $\delta_{HI} \times \kappa_{IM}$ with MeerKAT/SKA1

We are going to examine the correlation of a foreground (f) density tracer field with the background (b) convergence κ field, where both are probed by the IM survey.

Using the Limber approximation (Limbere 1954) the angular cross-power spectrum $C_{\delta_{HI} \kappa}$ is given by

$$C_{\delta_{HI} \kappa}(\ell) = \frac{3\Omega_{m} H_0^2}{2c^2} \int \frac{d\chi_f}{a(\chi_f)} W_f(\chi_f) \int d\chi_b W_b(\chi_b) \times \frac{\chi_b - \chi_f}{\chi_b \chi_f} \langle \delta_{HI} b_{HI} \rangle,$$

where χ is the comoving distance, $W_f(\chi)$ the foreground (background) redshift distribution and r_{HI} is a correlation coefficient quantifying the potential stochasticity between the dark matter density and the HI density fields. If the foreground lens slice is narrow enough in redshift ($\Delta z \sim 0.1$ is sufficient), we can approximate the

Figure 1. HI detection in autocorrelation with MeerKAT-16. The upper panel shows the predicted power spectrum $P_{HI}(k, z_c)$ at $z_c = 0.1$ (black solid line). The grey area represents the measurement errors δP_{HI}, taking $A_{sky} = 1000 \text{deg}^2$ and a total observation time of 3 weeks, while the cyan area corresponds to $A_{sky} = 5000 \text{deg}^2$ and a total observation time of 15 weeks. The lower panel shows the cumulative S/N ratio.

Figure 2. The upper panel shows the convergence power spectrum and measurement errors with MeerKAT (grey) and SKA1 (cyan), using the intensity mapping method. The lower panel shows the cumulative S/N ratio. Sources are at $z_s = 1.4$.

A. Pourtsidou et al.

foreground redshift distribution as a delta function at a distance \hat{z}_f, $W_f(\hat{z}_f) = \delta^3(\hat{z}_f - \hat{z}_f)$. We also use the delta function approximation at a distance \hat{z}_b for the distribution of the 21 cm sources. We then find

$$C_{HI,(\ell)} = \frac{3\Omega_m H_0^2}{2 \ell^2} \left(\int d\hat{z} E(\hat{z}) W^2(\hat{z}) [T^2(\ell, \hat{z})] \chi_{\ell} - \hat{z}_f \right) \frac{\chi_0 - \hat{z}_f}{\chi_0}.$$

It is useful to translate the HI power into multipole space,

$$C_{HI-HI}(\ell) = \int dz E(z) W(z)^2 [T(z)]^2 P_{HI}(\ell, z) \chi_{\ell},$$

with $P_{HI}(\ell, z)$ a projection kernel which we take to be a top-hat function.

The uncertainty in the cross-correlation, for a bin of width $\Delta \ell$ and for a survey scanning a fraction of the sky f_{sky}, is

$$\delta C_{HI,(\ell)} = \sqrt{\frac{2}{(2\ell+1)\Delta \ell f_{sky}}} \sqrt{\frac{C_{HI,(\ell)} + (C_{HI-HI}(\ell) + N(\ell))(C_{HI-HI}(\ell) + N(\ell))}{N(\ell)}}.$$

with $N(\ell)$ from Pourtsidou & Metcalf (2014, 2015). For the single-dish mode, the noise term $N(\ell)$ is given by (Battye et al. 2013)

$$N(\ell) = \Omega_{pix}(\sigma_{pix})^2 \exp \left[(\ell + 1)(\theta_B/\sqrt{8\ln2})^2 \right],$$

with $\sigma_{pix} = T_{sys}/\sqrt{2\Delta f_{int}}$ (the $1/\sqrt{2}$ factor comes from assuming dual polarization). For the interferometer mode, $N(\ell) = C_{\ell}^N$, defined in equation (7).

The results are shown in Fig. 3 assuming the MeerKAT and SKA1 parameters in interferometer mode. The foreground central redshift is $z_f = 0.5$ with $\Delta z = 0.1$. We see that using MeerKAT in interferometer mode we have the possibility of detecting the lensing convergence in cross-correlation with the H I density using the intensity mapping method (with a cumulative S/N level ~ 5). With SKA1 we can achieve a high S/N detection. Using tomography (for example, taking different foreground bins z_c) we can perform measurements with a similar S/N level along the redshift (frequency) direction.

![Figure 3](http://mnras.oxfordjournals.org/)

Figure 3. The upper panel shows the $C_{HI,(\ell)}$ cross-correlation power spectrum and measurement errors with MeerKAT (grey) and SKA1 (cyan). The lower panel shows the cumulative S/N ratio.

4 CROSS-CORRELATING WITH GALAXY SURVEYS

As we saw above, the prospects for detecting the H I density fluctuations are very good even for a near-term instrument such as MeerKAT-16; however, the measurement of convergence with H I intensity mapping might require an advanced SKA measurement. We also showed that cross-correlating the density and convergence using an IM survey can greatly improve the S/N for the lensing detection. It is interesting to examine to what extent the H I detections could be accelerated by cross-correlating these measurements with density and convergence derived from galaxy surveys, where the noise and potential systematics are expected to be independent.

For the purposes of these projections we assume that the galaxy power spectrum is related to the density by $P_{gg}(k, z) = b_g^2 P_{delta}(k, z)$ and assume the galaxy bias $b_g(z)$ evolves as $\sqrt{1 + z}$ (Rassat et al. 2008). In addition, there is potential stochasticity between the dark matter density and the galaxy density fields; this is quantified by the correlation coefficient r_g.

4.1 $\delta_{HI} \times \delta_g$ with MeerKAT-16 and DES

The $\delta_{HI} \times \delta_g$ combination, i.e. the cross-correlation between a 21 cm intensity map with LSS traced by galaxies has been investigated previously (Chang et al. 2010; Masui et al. 2013) at redshift $z \sim 1$. This correlation constrains $\Omega_{HI}b_{HI}(z)$. For this cross-correlation power spectrum

$$P_{HI-g}(k) = \bar{T} b_{HI} b_g P_{delta}(k),$$

the uncertainty averaged over a radial bin in k-space of width Δk is

$$\delta P_{HI-g} = \sqrt{2 \left(\frac{2\pi}{V_{int}} \right)^3 \frac{1}{4\pi k^2 \Delta k}} \sqrt{P_{HI-g}^2 + \left(b_{HI}^2 + \sigma_{pix}^2 V_{pix} W^{-2} \right) \left(P_{delta}^2 + P_{sys}^2 \right)}.$$

where the H I noise and shot noise terms were defined above. Black For our forecasts here we will set $r_{HI-g} = 1$ for simplicity. We will assume MeerKAT-16 measurements with $A_{sky} = 5000$ deg2 and a total observing time of 1 week for this case, and combine it with DES. The redshift bin we use is $0 < z < 0.2$ with central redshift $z_c = 0.1$. As we can see from Fig. 4, these measurements are

![Figure 4](http://mnras.oxfordjournals.org/)

Figure 4. The upper panel shows the P_{HI-g} cross-correlation power spectrum and measurement errors with MeerKAT-16 and DES. The lower panel shows the cumulative S/N. Note $t_{total} = 1$ week for MeerKAT-16.
very precise across a wide range of scales even if a single week’s observing time is used.

We will also be able to perform tomographic studies across the redshift range $0 < z < 1.45$, constraining the $\Omega_{HI/\Omega_{HI+x}}$ combination as a function of redshift. As we discussed in the introduction, constraining Ω_{HI} is very important for exploiting the power of intensity mapping surveys for cosmology. Performing the aforementioned tomographic studies would measure the late-time evolution of the H I parameters which determine the overall amplitude of the H I signal and, consequently, the S/N of the clustering measurements. In Switzer et al. (2013), for example, the measurement of $\Omega_{HI/\Omega_{HI+x}}$ was taken as a lower bound of Ω_{HI}, and then combined with the upper bound coming from H I autocorrelation measurements to a determination of Ω_{HI} at $z \sim 0.8$. As mentioned in the same paper, redshift space distortions can be utilized in order to break the degeneracy between the H I bias and H I density parameters (Wyithe 2008; Masui, McDonald & Pen 2010).

4.2 $\delta_{HI} \times \kappa_{IM}$ with MeerKAT and DES

We are now going to examine the cross-correlation of the H I density fluctuations with the lensing convergence using a galaxy survey.

The formulae used for the signal and error calculations are the same as in the $\delta_{HI} \times \kappa_{IM}$ case but instead of the IM lensing reconstruction noise $N_s(\ell)$ we have the galaxy survey shape noise $\sigma^2_{\kappa}/\beta^2$.

For DES lensing measurements, we consider a source bin with $z_b = 1.5$ and width $\Delta z = 1.0$. The chosen width contains a large number of galaxies, which translates to a low shape noise in the lensing convergence measurement. As already stated, we always assume $\sigma^2_\kappa = 0.3$ (Schmidt et al. 2012). For MeerKAT we use a bin with central redshift $z_c = 0.1$ and width $\Delta z = 0.08$ (equivalently, $\Delta \ell = 100$ MHz), with $t_{\text{total}} = 15$ weeks. We also take $A_{sky} = 5000$ deg2 and $\Delta \ell = 50$. The results for MeerKAT-16 are shown in Fig. 5 – note that the dominant noise term is from the H I noise $N_s(\ell)$ defined in equation (21) which diverges as we reach the limits set by the beam resolution.

In Fig. 6 we show the results for the full MeerKAT, instead in interferometer mode. One can see that this mode allows smaller scales to be probed with significant signal to noise. These measurements can constrain the $\Omega_{HI/\Omega_{HI+x}}$ combination. Using tomography this can be achieved across a wide range of redshift, which is very important as there is currently a lot of uncertainty regarding the H I evolution with cosmic time.

4.3 $\delta_{g} \times \kappa_{IM}$ with LSST and MeerKAT/SKA1

A very interesting combination to consider is the cross-correlation of the galaxy density field with the lensing convergence probed via the intensity mapping method. Cross-correlating κ_{IM} with δ_g can help boost the S/N of the κ detection using the method developed in Poursidou & Metcalf (2015) and also remove systematic effects since optical and intensity mapping surveys use completely different instruments and strategies. In this case we have

$$C_{\delta g}(\ell) = \frac{3\Omega_{dHI} H_0^2}{2\pi^2 c^2} \int \frac{r_g b_p(\hat{\chi}_f) P_{\delta g}(\hat{\chi}_f, \hat{\chi}_g)}{\chi f} (\hat{\chi}_f - \hat{\chi}_g) \chi f \bar{n}_g. \quad (24)$$

The corresponding uncertainty is

$$\delta C_{\delta g}(\ell) = \frac{2}{(2\ell + 1)\Delta \ell f_{\text{sky}}} \sqrt{C_{\delta g}(\ell) + \left(C_{\delta g}(\ell) + \frac{1}{\bar{n}_g} \right) \left(C_{\delta g}(\ell) + N_s(\ell) \right). \quad (25)$$

Here

$$C_{\delta g}(\ell) = \int dz E(z) W^2(z) P_{\delta g}(l/x(z), z)/\chi^2(z)$$

and \bar{n}_g is the number density of galaxies in the redshift bin under consideration.

We show results in Fig. 7 combining LSST and SKA1, as well as LSST and MeerKAT, with the 21 cm sources at redshift $z_f = 1.4$ and the foreground density tracer field at $z_f = 1.0$ with $\Delta z_f = 0.2$. We use $\Delta \ell = 50$.

We see that a high signal-to-noise detection can be achieved with SKA1 in combination with an optical survey like LSST. Comparing with the H I autocorrelation results presented in Fig. 3, we see that the $\delta_{HI} \times \kappa_{IM}$ cross-correlation is more powerful; however, the $\delta_{g} \times \kappa_{IM}$ correlation we considered here is less prone to systematic effects.
We consider a range of H I surveys, concentrating on the performance of the MeerKAT SKA pathfinder, as well as the full SKA Phase 1, and the DES and LSST optical galaxy surveys.

Our auto correlation forecasts show that high signal-to-noise H I detection can be achieved already with the first phase of MeerKAT, MeerKAT-16. This is very important for testing the intensity mapping method and calibrating the H I evolution across redshift using tomographic measurements from MeerKAT and Phase 1 of the SKA.

Figure 7. The upper panel shows the C_{gE} cross-correlation power spectrum and measurement errors with LSST and SKA1 (cyan), and LSST and MeerKAT (grey). The lower panel shows the cumulative S/N.

Figure 8. The upper panel shows the C_{gE} cross-correlation power spectrum and measurement errors with LSST and SKA1 (cyan), and LSST and MeerKAT (grey). The lower panel shows the cumulative S/N.

4.4 $\kappa_g \times \kappa_{IM}$ with LSST and MeerKAT/SKA

Finally, we cross-correlate the lensing convergence κ_g measured with LSST from sources within our chosen bin centred at $z_b = 1$, and κ_{IM} measured with the MeerKAT/SKA1 instruments assuming 21 cm sources at $z_s = 1.4$. The results are shown in Fig. 8. We have used $\Delta \ell = 50$.

We see that, in combination with a powerful optical galaxy survey like LSST, both MeerKAT and Phase 1 of the SKA can achieve detection of the lensing convergence coming from 21 cm sources with a high signal to noise. This combination could also alleviate issues arising from systematic effects.

Furthermore, as shown in Pourtsidou & Metcalf (2015), Phase 2 of the SKA (SKA2) can provide high-precision measurements of κ_g (in auto correlation) at redshifts $z \sim 2-3$. This means that we can use tomographic studies along many redshift bins in order to map the evolution of the growth function at redshifts higher than those of galaxy shear surveys. This will be the subject of future work.

5 DISCUSSION AND CONCLUSIONS

In this paper, we have shown how ongoing and future intensity mapping surveys and optical galaxy surveys can be used to perform high-precision clustering and lensing measurements. We considered a range of H I surveys, concentrating on the performance of the

ACKNOWLEDGEMENTS

This work was supported by STFC grant ST/H002774/1. RBM’s work is part of the project GLENCO, funded under the Seventh Framework Programme, Ideas, Grant Agreement n. 259349. The authors would like to thank Philip Bull, Stefano Camera, Roy Maartens and Mario Santos for useful discussions and feedback.

REFERENCES

Amendola L. et al., 2013, Living Rev. Rel., 16, 6
Dewdney P., 2013, SKA Project Documents. p. 1
Raccanelli A. et al., 2015, PoS, AASKA14, 031
Santos M. et al., 2015, PoS, AASKA14, 019
Wyithe S., 2008, MNRAS., 388, 1899
Zwaan M. A. et al., 2003, AJ, 125, 2842

This paper has been typeset from a \LaTeX file prepared by the author.