A research project to design, implement and assess the effectiveness of a sole eLearning module to prepare non-medical healthcare practitioners to report nuclear medicine bone scans

by

P. J. Delf, MSc, PgC RNI, BSc (Hons), DCR (R), FHEA

A portfolio of research and development in a professional context

Submitted in partial fulfilment of the
Professional Doctorate in Medical Imaging

School of Health Sciences and Social Work
Faculty of Science
University of Portsmouth
May 2012
Author

Penelope Delf
MSc Education and Training Management, University of Portsmouth
Postgraduate Certificate in Radionuclide Imaging, City University, London
BSc (Hons) Professions Allied to Medicine, University of Portsmouth
Diploma of the College of Radiographers (R)
Fellow of the Higher Education Academy

Professional Doctorate Student (part time)
Student Number: 154593
School of Health Sciences and Social Work
University of Portsmouth

Senior Lecturer
Radiography
School of Health Sciences and Social Work
University of Portsmouth
James Watson West
2 King Richard 1st Road
Portsmouth, PO1 2FR
023 9284 5397
penny.delf@port.ac.uk

Research supervisors
Doctor Alan Castle, Radiography, School of Health Science and Social Work, University of Portsmouth
Professor Graham Mills, Professional Doctorate Programme Manager and Unit Leader, University of Portsmouth
Abstract

The premise for this research initially stemmed from a perceived crisis facing the provision of the nuclear medicine service within the United Kingdom, the possible impact posed by the shortage of nuclear medicine clinicians and the untapped potential of a body of non-medical healthcare practitioners working within the nuclear medicine sector to whom recognised additional roles, such as reporting of images, may sensibly be delegated. Yet, despite the support by various professional bodies and colleges, uptake is not widespread and appears to be ill provided for in terms of educational programmes.

From an educational perspective, with ever advancing technology and the ubiquity of web based resources, eLearning within healthcare is still in its infancy. Certainly its ability and flexibility to reach geographically diverse populations of learners, is undisputed, yet whilst advantageous to the professional leaner in accessing material away from a restricted campus based environment, its efficacy to teach a skill, or competence, and indeed to translate this to clinical practice remains largely unproven.

With both these issue in mind, the project question was posed as to whether it was possible to establish the efficacy and credibility of an eLearning resource to prepare and support the training of non-medical healthcare practitioners working within the field of nuclear medicine in reporting of bone scans.

Research aim and method
To design, implement and evaluate the impact/effectiveness of a solely e-based learning module to prepare non-medical healthcare professionals to report nuclear medicine bone scans and to ascertain its application as an educational programme for a wider audience.

Using an experimental instructional design method, a module was created using various software packages accessible through a virtual learning environment provided by the University of Portsmouth. This enabled the uploading and
provision of academic content, interactive elements and an image database through which a ‘real-to-life’ learning package, similar to the clinical situation, could take place.

Volunteers were invited to take part in the trial, working their way through a series of knowledge and competence based assessments (formative and summative) and to participate in two surveys at the beginning and on completion of the module. Additional data was gathered through quantitative features embedded within the learning management platform.

Findings
Of thirty-three volunteers recruited to the programme, sixteen completed all the advised summative elements and surveys. From a functional design perspective, the module was well received, pinpointing the benefits and need for this type of resource within the nuclear medicine sector, although the programme would benefit from further refinement for more widespread commercial use.

The eLearning programme clearly demonstrated knowledge gain, although its ability to impart a new skill/competence, in terms of reporting, can only be cautiously expressed. Those with less experience showed the most marked improvement and as a cohort, there was statistical improvement in discerning normal from abnormal appearances. None of the cohort reached the desired level of concordance in the report writing elements with the reference standard reports, although this may have been, constrained due to programme limitations. There was, however, sufficient evidence to suggest the programme may be potentially suitable as a self-audit tool for reporting, or as a general continuing professional development resource.

Conclusion
eLearning holds widespread appeal to the practising healthcare professional in terms of its ability and flexibility to deliver education, suiting individual learning needs. It should be easily navigable, stimulating and interactive and wherever possible mimic the professional context.
The effectiveness of this programme to prepare non-medical healthcare professionals to acquire a new skill/competence remains outstanding at this time, although there are indications of its influence towards learning.

Some of the learning was clearly transferrable to the clinical setting and could be used for creating a much needed and useful resource for audit and/or continuing professional development purposes. There is also some indication it may be beneficial to professional advancement.

Ultimately, in line with European and national recommendations, eLearning should be allowed to evolve through closer collaboration between HEIs and the private sector, in creating sustainable eLearning resources, maximising its effectiveness for use both nationally and potentially, internationally.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Contents</td>
<td>vi</td>
</tr>
<tr>
<td>List of tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of figures</td>
<td>xii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xiv</td>
</tr>
<tr>
<td>Declaration</td>
<td>xv</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xvi</td>
</tr>
<tr>
<td>Glossary</td>
<td>xviii</td>
</tr>
<tr>
<td>Foreword</td>
<td>xx</td>
</tr>
</tbody>
</table>

Chapter 1 - Literature Review

1.1 Reporting by non-medical healthcare practitioners

1.1.1 The current and historical background
1.1.2 The case for reporting by non-medical healthcare practitioners
1.1.3 What constitutes a report?
1.1.4 Issues of accountability and cost
1.1.5 Summary of reporting by non-medical healthcare practitioners

1.2 Learning and teaching in the modern world

1.2.1 Theories of learning
1.2.2 Modern educational theory
1.2.3 eLearning – context and theory
Chapter 4 - Trial Implementation and Results

4.1 Implementation of trial module
 4.1.1 Recruitment of volunteers
 4.1.2 Trial module release

4.2 Module participation
 4.2.1 Access patterns to trial module
 4.2.2 Volunteer profile of trial module
 4.2.3 Volunteer attitudes to computers
 4.2.4 Volunteer expectations

4.3 Volunteer experience (KM Level 1)
 4.3.1 Comments and evaluation of eLearning platform (Victory)
 4.3.2 Volunteer evaluation of module design
 4.3.3 Volunteer evaluation of module content
 4.3.4 Suggestions for improvement
 4.3.5 Summary of volunteer experience

4.4 Learning and verification of diagnostic accuracy and progression (KM Level 2)
 4.4.1 Cohort progression
 4.4.2 Performance in short answer and multiple choice assessments
 4.4.3 Performance in report writing
 4.4.4 Influence of professional background

4.5 Changes in behaviour (KM Level 3)
 4.5.1 Volunteer evaluation of learning achieved
 4.5.2 Volunteer evaluation of eLearning

4.6 Overall evaluation of module

4.7 Summary of findings

Chapter 5 - Discussion

5.1 Volunteer profile

5.2 Volunteer reaction and experience
 5.2.1 Accessibility of trial module
 5.2.2 Design and usability of trial module
 5.2.3 Module content
5.2.4 Release of scores and feedback issues 133
5.2.5 Summary of volunteer reactions and experience 135
5.3 Volunteer learning - verification of diagnostic accuracy and progression 137
 5.3.1 Volunteer engagement 137
 5.3.2 Verification of diagnostic ability and accuracy of volunteer's report writing performance 137
 5.3.3 Conclusions on reporting ability as verified by the results 144
5.4 Volunteer behaviour 146
5.5 Summary of chapter five 149

Chapter 6 - Conclusions 151
 6.1 Application to practice 152
 6.2 National/international implications and the future 154
 6.3 Recommendations and future work 156
 6.4 Conclusion summary 157

References 159

Appendices
 Appendix I Search strategy for review of relevant literature 169
 Appendix II Competence, knowledge levels, hierarchy & design parameters for assessing diagnostic performance 172
 Appendix III Research & ethical approvals 178
 Appendix IV Overview of module sections & subsections 182
 Appendix V SCORM & SENDA definitions 191
 Appendix VI Overview of rejected software packages 193
 Appendix VII Bloom's taxonomy related to Questionmark™ Percept™ question types 195
 Appendix VIII Permissions from hospital site trusts to use images & patient recruitment, consent & disclaimer information 197
 Appendix IX Example of Pilot semi-structured interview feedback questions 207
 Appendix X Flyer to advertise trial 211
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI</td>
<td>Example of project details email for enquirees</td>
<td>213</td>
</tr>
<tr>
<td>XII</td>
<td>Instructions for accessing the module</td>
<td>215</td>
</tr>
<tr>
<td>XIII</td>
<td>Volunteer disclaimer & consent form</td>
<td>221</td>
</tr>
<tr>
<td>XIV</td>
<td>Results from the report writing assessments</td>
<td>225</td>
</tr>
<tr>
<td>XV</td>
<td>Generic feedback given on the report writing assessments</td>
<td>237</td>
</tr>
</tbody>
</table>
List of tables (in order of appearance)

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Components and levels contributing to a clinical report</td>
<td>6</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Module learning outcomes</td>
<td>26</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Summary of software considered for assessment purposes</td>
<td>32</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Interpretation of ‘k’ values</td>
<td>54</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Profile of pilot volunteers</td>
<td>57</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Time spent by volunteers engaged with module</td>
<td>74</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Attitudes towards computers</td>
<td>79</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Use of presentation and teaching elements</td>
<td>85</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Use of additional web-based resources</td>
<td>87</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Access to formal assessments</td>
<td>88</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Progress regarding content of reports</td>
<td>100</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Progress in decisions based on agreement of ‘opinion of findings’</td>
<td>101</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>‘k’ values based on cohort performance for each assessment</td>
<td>102</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Progress in decisions based on agreed ‘clinical significance’ of findings</td>
<td>103</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Calculations for ‘clinical significance’ decisions across all tests</td>
<td>104</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Report writing assessment outcomes compared to years of experience</td>
<td>105</td>
</tr>
</tbody>
</table>
List of figures (in order of appearance)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Components of an integrated approach to learning</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Desired framework of learning activity design</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Anticipated layout of module home page</td>
<td>39</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Logging on and locating the module from the course list</td>
<td>71</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Volunteer engagement and completion of module sections</td>
<td>72</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Activity over trial period</td>
<td>73</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Volunteer age range</td>
<td>75</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Geographical location of volunteers completing pre-module survey</td>
<td>76</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Range of qualifications held by volunteers</td>
<td>77</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Years of experience in nuclear medicine practice</td>
<td>78</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Reasons for undertaking trial module</td>
<td>80</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Evaluation of Victory as a platform for this learning programme</td>
<td>82</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Volunteer rating of module design</td>
<td>84</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Volunteer engagement with module content</td>
<td>86</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>Average module mark (summative only)</td>
<td>94</td>
</tr>
<tr>
<td>Figure 4.13</td>
<td>Average scores compared to time spent</td>
<td>94</td>
</tr>
<tr>
<td>Figure 4.14</td>
<td>Module average compared to length of experience</td>
<td>95</td>
</tr>
<tr>
<td>Figure 4.15</td>
<td>Percentage scores from short answer bone assessment</td>
<td>96</td>
</tr>
<tr>
<td>Figure 4.16</td>
<td>Percentage scores from breast and prostate MCQ</td>
<td>96</td>
</tr>
<tr>
<td>Figure 4.17</td>
<td>Percentage scores from bone issues MCQ</td>
<td>97</td>
</tr>
<tr>
<td>Figure 4.18</td>
<td>Percentage scores from bone scans MCQ</td>
<td>98</td>
</tr>
<tr>
<td>Figure 4.19</td>
<td>MWU for clinical significance decisions between initial and interim report writing tests</td>
<td>104</td>
</tr>
<tr>
<td>Figure 4.20</td>
<td>Assessment results (average scores) by professional group</td>
<td>107</td>
</tr>
<tr>
<td>Figure 4.21</td>
<td>MWU for variation in average performance by professional group (initial and final report writing tests)</td>
<td>108</td>
</tr>
<tr>
<td>Figure 4.22</td>
<td>Areas where knowledge as gained</td>
<td>109</td>
</tr>
<tr>
<td>Figure 4.23</td>
<td>Volunteers’ perceptions of skills gained</td>
<td>109</td>
</tr>
<tr>
<td>Figure 4.24</td>
<td>Confidence and competence in viewing and reporting images</td>
<td>110</td>
</tr>
<tr>
<td>Figure 4.25</td>
<td>Volunteers’ self assessment of module performance and required level to competently interpret bone scans</td>
<td>110</td>
</tr>
<tr>
<td>Figure 4.26</td>
<td>Volunteer perceptions of eLearning</td>
<td>111</td>
</tr>
<tr>
<td>Figure 4.27</td>
<td>Volunteer perceptions of the feasibility and effectiveness of the module to acquire a new skill</td>
<td>111</td>
</tr>
<tr>
<td>Figure 4.28</td>
<td>Professional relevance of module</td>
<td>112</td>
</tr>
<tr>
<td>Figure 4.29</td>
<td>Overall evaluation of module</td>
<td>113</td>
</tr>
</tbody>
</table>
Acknowledgements

I would like to acknowledge and thank the following individuals, companies and institutions, without whose help, this research would not have been possible.

My supervisors, Doctor Alan Castle and Professor Graham Mills, for their support and reading of various drafts;

The nuclear medicine consultants, managers, research governance departments, physicists, technical staff and, of course, the patients at Southampton University Hospitals Trust and Poole District General Hospital, for their kind permission to gather the case information for the purpose of constructing the dedicated image database;

Peter Rice and Gordon Priestly of Aimsability.com for their permission and help in uploading case information to the WebAiMS software to construct a secure image database used to support various teaching resources for the module;

Sarah Cooper and Emma Coppins, online course developers in Technology Enhanced Learning at the University of Portsmouth, for bringing the interactive design elements of the module to fruition and for their expertise and knowledge of Questionmark™ Perception™ in the creation of assessments;

To my colleagues in Radiography, School of Health Sciences and Social Work, in particular, my Professional Lead, Mr Harold Clarke, and Head of School, Doctor Jeannette Bartholomew for their continued encouragement;

To all the volunteers, both from the pilot study and main trial, who generously gave their time and without whom I would have had no data;

Lastly, to my family, who have put up with my ‘absence’ from normal ‘home’ life, which is an imbalance I hope to be able to redress shortly.
Declaration

Whilst registered as a candidate for the degree, Professional Doctorate in Medical Imaging, I have not been registered for any other research award. The results and conclusions embodied on this thesis are the work of the named candidate and have not been submitted for any other academic award.

Penelope J. Delf

May 2012
Abbreviations

ACTOR - Accredited Clinical teaching Online Resources
AVI - Audio-visual interface
BNMS - British Nuclear Medicine Society
CETL - Centre for Excellence in Teaching and Learning, University of Nottingham
CPD - Continuing professional development
DCR - Diploma of the College of Radiographers
DICOM - Digital image communication in medicine
DRI - Diploma in Radionuclide Imaging
DoH - Department of Health
e-LfH - elearning for healthcare
GMC - General Medical Council
HE - Higher Education
HEI - Higher Educational Institution
HNC - Higher National Certificate
ICSCNM - Intercollegiate Standing Committee on Nuclear Medicine
JISC - Joint Information Systems Committee
JPEG - Joint photographic experts group
JRCPTB - Joint Royal Colleges of Physicians Training Board
KM - Kirkpatrick Model
LDAP - Lightweight Directory Access Protocol
MA - Master of Arts
MBA - Masters in Business and Administration
MSc - Masters of Science
MSc Eng - Masters in Engineering
MTO - Medical Technical Officer
MWU – Mann Whitney U test
NHS - National Health Service
OER - Open source educational resource
PACS - Picture Archiving and Communication Systems
PET - Positron emission tomography
PgD (interp) - Postgraduate Diploma in Interpretation
PORSCHE - Pathways to Open Resource Sharing through Convergence of Healthcare Education
QMP - Questionmark™ Perception™
RCN – Royal College of Nursing
RCR - Royal College of Radiologists
RCP - Royal College of Physicians
RLO - Reusable learning object
SCoR - Society and College of Radiographers
TEL - Technology enhanced learning department at the University of Portsmouth
VLE - Virtual learning environment
UK – United Kingdom
Glossary

DICOM - an acronym for Digital Image Communication in Medicine which denotes a set of standards that describe a digital file format which can be recognised by other systems (Jones & Oakley, 2003, p.52) for handling, storage, printing and information exchange in medical imaging. Images held are usually uncompressed, of high quality, but usually require large storage space (Cosson & Willis, 2011, p.113).

Digital Literacy – in the context of this research has been defined as the ability to interact with computer technology quickly and efficiently to enhance learning.

Dual Learning - highlights the importance of realistic learning, learning in the workplace and promoting the coordination and integration of knowledge, skills and competencies (such as those found in the professional context) thereby minimising the gap between formalised education and professional practice.

Flash - is a software authoring tool, originally developed by Macromedia. It can be used to create animation with special effects, audio tracks and interactivity, allowing for a full screen navigation interface. Content is saved in a file with a Shockwave Flash (SWF) file name extension. It can be used across a normal modem connection and is a popular piece of software, regarded as being ubiquitous on the Web owing to its speed and smooth rendering of graphics.

Flexible Learning - is a concept wherein the student manages their own time and place of study. Ideally suited to the adult learner, study is enabled outside of the work place and without making demands of single location based learning. It also supports the notion of student-centred learning where instruction can be personalised and taken at the individuals own pace and level of competency.

Integrated Learning - combines the elements of complex, flexible and dual learning into an integrated approach where new technologies such as E-learning, inevitably play a key role in helping to achieve learning goals.
JPEG - is a term coined from the Joint Photographic Experts Group to describe a standard method, commonly used, of lossy compression of digital images, which allows a ‘trade off’ between storage size and image quality (Cosson & Willis, 2011). Note: ‘Lossy’ compression is a method of data encoding which discards (loses) some information to minimise file size, thereby reducing storage, handling and transmitting issues. When compressing images, this will inevitably result in the degradation of the image.

LDAP - stands for Lightweight Directory Access Protocol. It is an standard internet application protocol, which allows reading and editing of directories over an Internet provider network. In simple terms it allows email and other programmes to access information from a server so individuals or groups can be identified.

PACS - Picture Archiving and Communication Systems. This is a system used within a healthcare setting which enables diagnostic images (radiographs and scans) to be stored electronically and viewed on screens, creating a near filmless process. It can be remotely accessed and allow comparability of multiple images, thereby improve and enhancing diagnostic methods.

Shibboleth® - a standards based, open source software package for web single sign-on across or within organizational boundaries. It allows sites to make informed authorization decisions for individual access of protected online resources in a privacy-preserving manner (definition from Shibboleth® accessed 20.6.11).

Victory - is a local name for the Blackboard based eLearning platform used by the University of Portsmouth for intranet provision.

VLE - Virtual Learning Environment is an educational system based on Web 2.0 technology, usually used in tandem with a content management system, allowing two way interaction for learning and teaching purposes.
Foreword

The main driver for this project stems from the perceived crisis in manpower facing the provision of a high quality, safe and effective nuclear medicine service within the United Kingdom (UK) (Intercollegiate Standing Committee on Nuclear Medicine [ICSCNM], 2003, p.vii; Royal College of Physicians [RCP], 2008, p.243).

Most hospitals in the UK provide some form of nuclear medicine service. This may range from a comprehensive service offered by dedicated nuclear medicine specialists, to radiologist-led services with a subspecialty interest in this field. Yet, “non-medical personnel are essential to the routine provision of a nuclear medicine service” (RCP, 2008, p.245) acknowledging that a high quality service, relies on a multi-disciplinary approach.

Nuclear medicine has developed rapidly in the last decade and with the addition of new technologies, such as positron emission tomography (PET) and new radiopharmaceuticals, it is becoming increasingly difficult to keep pace with demand (RCP, 2008, p.243). In conjunction with this, is an imbalance between junior doctors entering the specialty and planned retirements of clinicians currently in post, this has been highlighted as potentially contributing to the collapse of the service, unless there is a radical rethink of service provision (ICSCNM, 2003, p.9; RCP, 2008, p.255).

It takes time to train junior clinicians, particularly where negative perceptions of the specialty exist (limited clinical variety, potential clinical isolation and few consultant positions). Increased clinician numbers are needed and whilst this is being addressed through specialty registrar training programmes, there is still doubt as to whether this will be adequate to meet with demand. Over the next decade, it is anticipated that 100-120 whole time equivalent consultants will be needed just to maintain the existing level of service, excluding growth areas such as PET (ICSCNM, 2003, p.vii; RCP, 2008, p.254).

If the service is to remain viable in the foreseeable future, looking to the largely untapped resource and skill of non-medical healthcare professionals, such as
radiographers and medical technical officers, currently working within the field, may provide a more immediate solution. In fact, the British Nuclear Medicine Society [BNMS] has developed guidelines outlining “the training and experience required for the extension of roles for non-medical healthcare professionals” (RCP, 2008, p.250).

The move to utilise non-medical healthcare professionals and to promote cross boundary working is not new. In the past, the Royal College of Radiologists [RCR] advocated the extension of the radiographers’ role and with the modernization of the National Health Service [NHS] increasing the skill mix has been seen as providing a more structured career progression and improving staff retention amongst non-medical personnel (Society and College of Radiographers [SCoR] 2010, p.6; joint paper by RCR and SCoR, 2007, p.6). However, with changing healthcare and political climates, further pressure for enhancing the role of non-medical healthcare professionals has gathered pace. The ever increasing demand on already stretched services has led to non-medical professionals from all sectors being asked to raise their level of practice to ease the burden on clinicians (Great Britain. Department of Health [DoH], 2000, p.7; Great Britain. DoH, 2002a, p.10; RCR, 2006, p.6; joint paper by RCR and SCoR, 2007, p.7). This is evident within nuclear medicine, where there are clear moves to maintain the service and increase patient choice by allowing some non-medical practitioners to provide timely and accurate reports of examination findings for referring clinicians (Nuclear Medicine Communications [NMC], 2004, p.751; BNMS, 2005, p.1).

Despite the advantages to service provision and the more effective use of existing manpower, cross boundary working does not come without some concerns, not least the perceived knowledge gap between medical and non-medical healthcare professionals. Currently, there is a lack of adequate resources and training programmes to help non-medical professionals expand their practice (Forsyth & Robertson, 2007, p.54).

The rationale for this project is the result of developments regarding changing professional boundaries, healthcare provision and practice, potential manpower shortages in nuclear medicine and the role of higher education (HE) in supporting
the ‘learning society’ and the promotion of learning technologies (Messer & Griffiths, 2007, p.97).

With technology constantly evolving and with regard to the eLearning process, this project aims to develop and implement a discrete eLearning module in nuclear medicine skeletal reporting for non-medical healthcare professionals, focusing on the efficacy and reliability of the programme, knowledge and competence gained and possible transference to the clinical setting.