DRUG TEST CONFIRMATIONS

Edition No: 3.0
Operative Date: December 2008
Review Date: December 2010
Replaces: Edition 2.0

Author: Tracey Gous
Authorised by: Richard Evers
Copy no: 2

HISTORY
Edition No	DATE	COMMENT
1 | 26/10/2005 | New Edition
2 | 28/9/2007 | Laboratory move to KCH, change to Pathnet
3 | 1/12/2008 | Change method to LCMS

CIRCULATION LIST
Copy No	Location	Name
1 | Toxicology Laboratory | Andrew Marsh
TABLE OF CONTENTS

PURPOSE OF THE TEST ... 3
PRINCIPLE OF THE TEST ... 3
SAMPLE COLLECTION AND PREPARATION 4
REAGENTS, MATERIALS AND Equipment 4
 Stock Reagents .. 4
 Stock Standards .. 5
 Reagent Preparation ... 5
 Materials .. 6
 Equipment .. 7
COSHH ASSESSMENT ... 8
HEALTH AND SAFETY PRECAUTIONS 8
QUALITY CONTROL ... 8
 Internal Quality Assessment ... 9
 External Quality Assessment ... 9
METHOD .. 10
 Worksheet Creation .. 10
 Sample Preparation .. 10
 Run Preparation ... 10
 Starting the Run .. 11
 Processing LCMS Data ... 12
REQUESTING AND REPORTING OF RESULTS 12
 Entering Results .. 13
REFERENCE RANGES ... 13
LIMITATION OF THE ASSAY ... 13
INTERPRETATION OF RESULTS ... 14
REFERENCES ... 14
APPENDICES .. 15
PROCEDURE AMENDMENT FORM .. 16
SIGNATURE PAGE ... 17
PURPOSE OF THE TEST

The first stage of a drug screen is to use an immunoassay method to screen samples. This method can identify samples that are positive for a class of substances but cannot distinguish between different drugs within the class, for example morphine and codeine for opiates or amphetamine and ecstasy for the amphetamine group.

In the second stage of a drug screen, all samples that are positive for a specified class of drugs are confirmed by Liquid Chromatography-Mass spectrometry (LCMS). This procedure uses a different type of method from the screening process to identify the main classes of drug. The use of a different type of method allows non-specific interference to be reduced so that the accuracy of the final result is assured.

The predominant opiate found in the laboratory is morphine, which can either be present as the primary drug or more probably as a metabolite of heroin. Other main opiates detected are codeine and dihydrocodeine. There are a variety of opiate class drugs, some of which are available over the counter, some are prescription only medicines, and some are controlled or illicit drugs.

The main amphetamines found in the laboratory are amphetamine and ecstasy (methylene dioxy methylamphetamine, MDMA), but there are also a large number of immunoassay positive results from interfering substances, principally mebeverine (Colofac®).

Other drugs that can also be confirmed using this method include the benzodiazepines, methadone and cocaine metabolites.

PRINCIPLE OF THE TEST

Urine samples that require confirmation are spiked with internal standard solution before being aliquoted into a HPLC vial, which is sealed and loaded onto the HPLC system. An increasing gradient of acetonitrile in water separates the components of the urine sample, such that they are eluted into the source of the mass spectrometer at known retention times. The eluant from the Jasco HPLC system is introduced into the LCQ through the divert valve and into the Electrospray Ionisation (ESI) probe. A combination of high voltage, heat and nitrogen gas drives off all of the solvent, leaving the ions to be drawn through the ion transfer capillary into the mass spectrometer. A series of lenses, including a quadrupole and octupole, guide the ions into the ion trap, where they can be collided or expelled and detected by the dynode.

Each analytical cycle consists of a number of stages or Scan Events. Initially a full scan of parent ions is performed in positive mode. Parent ion masses are compared with the mass list, and if an ion is present within the specified time window, a data dependent scan can be performed, producing an MS\(^2\) spectrum of the parent ion. This scan event can be repeated with several ions within the list, or dedicated scan events for specific ions. A negative ion mode can also be performed before the cycle starts a new first Full Scan.

Once the analytical run is complete, the chromatogram is analysed by the ToxID software for a specified set of analytes. The parent masses, retention times and ion intensities on the chromatogram are compared with the ToxID configuration file. If a match is found and the most intense daughter ion matches that in the configuration file, a library search is performed on that spectrum. A library match greater than the hit threshold set up in ToxID is considered a positive result for that particular analyte. The configuration file is compared with a calibrator sample on a daily basis to ensure that retention times and ion intensities do not shift significantly.
SAMPLE COLLECTION AND PREPARATION

1. Urine is the only sample that is normally acceptable for drugs of abuse screening
2. Urine should be collected into a universal container without preservative
3. The volume of sample required for the test is at least 1mL.
4. No specific patient preparation is required
5. No specific timing of sample collection is required
6. Pre-analysis: Urine samples are received from the Olympus AU640
7. Post-analysis: The samples are stored in TOX6 for one week after receipt after which they are disposed of as clinical waste.

REAGENTS, MATERIALS AND EQUIPMENT

Stock Reagents

Rathburn Methanol

Sprinter No. : 005737
Cat. No. : RH1019
Volume : 2.5L
Contents : HPLC grade methanol
Storage : Stored at room temperature
Location : Stored in flammable cupboard in the Confirmation Laboratory, or in the outside solvent store

Fluka Formic Acid

Sprinter No. : 001344
Cat. No. : 94318
Volume : 250 mL
Contents : Formic acid
Storage : Stored at room temperature
Location : Stored in flammable cupboard in the Confirmation Laboratory, or in the outside solvent store

Fluka Ammonium Formate

Sprinter No. : 001344
Cat. No. : 70221
Volume : 100 g
Contents : Ammonium formate
Storage : Stored at room temperature
Location : Stored in chemicals cupboard in the Confirmation Laboratory

Rathburn Acetonitrile

Sprinter No. : 005737
Cat. No. : RH1016
Volume : 2.5L
Contents : HPLC grade acetonitrile
Storage : Stored at room temperature
Location : Stored in flammable cupboard in the Confirmation Laboratory, or in the outside solvent store
Stock Standards

LGC Promochem Morphine D6 Internal Standard

- **Sprinter No.:** 012641
- **Cat. No.:** CERM-086
- **Volume:** 1 mL
- **Contents:** 1.0mg/ml Morphine D6 in methanol
- **Storage:** Stored in TOX 5 refrigerator
- **Location:** Tox 5 refrigerator in the Confirmation Laboratory

LGC Promochem Cocaine D3 Internal Standard

- **Sprinter No.:** 012641
- **Cat. No.:** CERC-014
- **Volume:** 1 mL
- **Contents:** 1.0mg/ml Cocaine D3 in acetonitrile
- **Storage:** Stored in TOX 5 refrigerator
- **Location:** Tox 5 refrigerator in the Confirmation Laboratory

LGC Promochem Methadone Internal Standard

- **Sprinter No.:** 012641
- **Cat. No.:** CERM-007
- **Volume:** 1 mL
- **Contents:** 1.0mg/ml Methadone D3 in methanol
- **Storage:** Stored in TOX 5 refrigerator
- **Location:** Tox 5 refrigerator in the Confirmation Laboratory

LGC Promochem Amphetamine D11 Internal Standard

- **Sprinter No.:** 012641
- **Cat. No.:** CERA-019
- **Volume:** 1 mL
- **Contents:** 1.0mg/ml Amphetamine D11 in methanol
- **Storage:** Stored in TOX 5 refrigerator
- **Location:** Tox 5 refrigerator in the Confirmation Laboratory

Reagent Preparation

Preparation of reagents must be recorded in the reagent file in the confirmation laboratory, and the date of preparation should be written on the bottle.

HPLC Solvents

- **i) 1M Ammonium Formate**
 - **Preparation:** Add 10.61g of ammonium formate to 150mL of deionised water in a 200mL volumetric flask. Fill to the mark.
 - **Stability:** Stable refrigerated for 6 months from date of preparation
 - **Storage:** Stored in TOX5 refrigerator
 - **Labelling:** Label with Harmful hazard label
ii) Mobile Phase A

Preparation: Add 1mL of formic acid to approximately 900mL of deionised water in a 1L volumetric flask. Add 10mL of 1M ammonium formate and fill to the mark with deionised water. Filter before use using the HPLC eluant filtration apparatus.

Stability: Stable for 2 months from date of preparation.

Storage: Stored at room temperature.

Labelling: Label with Harmful hazard label.

iii) Mobile Phase B

Preparation: Add 1mL of formic acid to approximately 900mL of acetonitrile in a 1L volumetric flask and fill to the mark with acetonitrile. Filter before use using the HPLC eluant filtration apparatus.

Stability: Stable for two months from the date of preparation.

Storage: Stored at room temperature.

Labelling: Label with Harmful Flammable hazard label.

Working Internal Standard Solutions

i) Morphine D6 Internal Standard

Preparation: Dilute 1mL of 1.0mg/ml of internal standard with water into a 100mL volumetric flask to provide a 10µg/mL working solution.

Stability: Stable refrigerated for 6 months from date of preparation.

Storage: Stored in TOX5 refrigerator.

Labelling: Label with Harmful hazard label.

Materials

HPLC Crimp Vials

Supplier: Esslabs

Sprinter No.: 007523

Cat. No.: 5181-3375

Contents: 100 glass vials (32x11.6mm)

Storage: Stored at room temperature.

Location: Stored in cupboard in Mass Spec Laboratory.

HPLC Caps

Supplier: Esslabs

Sprinter No.: 007523

Cat. No.: 5818-1210

Contents: 100/box

Storage: Stored at room temperature.

Location: Stored in cupboard in Mass Spec Laboratory.

Membrane filters (0.45 µm)

Supplier: Phenomenex

Sprinter No.: 001441

Cat. No.: Nylon 66 AFO-0504 or equivalent

Contents: 100/pack

Storage: Stored at room temperature.

Location: Stored in cupboard in Confirmations Laboratory.
PFP Gold HPLC Column
 Supplier : Thermo Fisher Scientific
 Sprinter No. : 023596
 Cat. No. : 25405-052130 (50 x 2.1)
 Contents : One PFP Gold HPLC Column
 Storage : Stored at room temperature
 Location : Stored in cupboard in Confirmations Laboratory

Guard Cartridge
 Supplier : Thermo Fisher Scientific
 Sprinter No. : 023596
 Cat. No. : 25405-012101
 Contents : 10/pack Hypersil gold PFP 5µm
 Storage : Stored at room temperature
 Location : Stored in cupboard in Confirmations Laboratory

Strata X Cartridge
 Supplier : Phenomenex
 Sprinter No. : 001441
 Cat. No. : 25405-052130 (50 x 2.1)
 Contents : Strata X cartridge 10mg pipette mass
 Storage : Stored at room temperature
 Location : Stored in cupboard in Confirmations Laboratory

LCQ Fleet Consumables
 Supplier : Thermo-Fischer
 Sprinter No. : 023596
 Cat. No. : See various in Equipment Folder or Desktop under LCQ Consumable

Plastic Pasteur pipettes
 Supplier : Elkay
 Sprinter No. : 000248
 Cat. No. : L27P511000
 Contents : 100 pipettes/box
 Storage : Stored at room temperature
 Location : Stored in cupboard in Confirmations Laboratory

Cutoff Calibrator
 To make up cut-off calibrator; add 20ml Biorad C2 and 20ml Biorad C3 plus 10 µl of 2.5mg/mL DHC (Dihydrocodeine), in a 50 ml volumetric flask.
 Cut-off Calibrator is stable for 30 days at 2-8°C after opening or until the expiry date on the package, whichever comes first.
 Validate Cut-off Calibrator by running alongside existing Cut-off Calibrator and ensuring that retention times are sensitivities are similar. Record details of preparation of the Cut-off Calibrator in the reagent log, stored on the shelves in the confirmation laboratory.

Equipment
 HPLC Eluant filtration apparatus
 Crimper for lids of HPLC vials
COSHH ASSESSMENT

<table>
<thead>
<tr>
<th>Substance</th>
<th>Data Sheet Reference</th>
<th>Handling requirements</th>
<th>Risk Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>VWR 1015800</td>
<td>Toxic and Flammable. Wear gloves when handling. Obtain medical attention on eye contact or after ingestion.</td>
<td>M</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>VWR 1038600</td>
<td>Toxic and Flammable. Wear gloves when handling. Obtain medical attention if ingested.</td>
<td>M</td>
</tr>
<tr>
<td>Ammonium Formate</td>
<td>Sigma-Aldrich 55674</td>
<td>Irritant. Wear gloves when handling. Obtain medical attention if ingested.</td>
<td>L</td>
</tr>
<tr>
<td>Formic acid</td>
<td>Sigma-Aldrich 94318</td>
<td>Corrosive and Flammable. Toxic by inhalation. Wear gloves when handling.</td>
<td>M</td>
</tr>
<tr>
<td>Standard Solutions</td>
<td>Cerilliant various</td>
<td>Flammable, Toxic and Irritant</td>
<td>M</td>
</tr>
</tbody>
</table>

HEALTH AND SAFETY PRECAUTIONS

Laboratory coats must be worn when performing any part of this procedure. Gloves and goggles must be worn at all times while handling urine samples, methanol or solvents.

The BIORAD urine controls are lyophilised material of human source, which have been tested for hepatitis B surface antigen (HBsAG), antibody to hepatitis C (HCV) and antibody to HIV and found to be non-reactive. However as no method can offer complete assurance as to the absence of infectious agents, this material and all patient samples should be handled as though capable of transmitting infectious disease.

QUALITY CONTROL

Quality control samples are run with each batch of samples.

Bio Rad DAU Negative Control
- **Sprinter No.:** 000434
- **Cat. No.:** 460
- **Volume:** 10x20mL
- **Contents:** Drug free human urine
- **Storage:** Stored at 2-8°C
- **Location:** Stored in fridge TOX5
- **Preparation:** Control is supplied ready to use
- **Stability:** 30 days at 2-8°C after opening or until the expiry date on the package, whichever comes first
QUALITY ASSURANCE

Internal Quality Assessment
When samples run for analytes where no IQC is available, a sample known to contain the analyte will be run as an IQA sample.

External Quality Assessment
Three external quality assurance samples are received every three months. Results are faxed or e-mailed to the organisers, and repeat samples may also be obtained from there.

Samples are received lyophilised and require reconstitution with 15mL of deionised water using a volumetric pipette. The samples are allowed to stand for 5 minutes before gentle mixing for at least 20 minutes. External Quality Assessment samples are analysed by ion trap LCMS, even if the Olympus screening results do not indicate that this is required. This is to ensure that all drugs that are looked for in the laboratory are also looked for in the EQA samples. Failure to follow this procedure may give a false negative result for weak positive morphine, quinine or cyclizine, among others.
METHOD

Worksheet Creation
i) From Pathnet, type CB120 to open the worklist generator. Fill in the Workcentre (538), Testing Site (2) and Detail test code (LCMS).
ii) Run the Worklist by double clicking on the icon to download batch file, FTP_LCMS stored at G:\Chem\Toxicology\Charts & Forms\Drugs\FTP.
iii) Double click on the LCMS worklist generator to open, “LCMS Sequence Import.XLS” stored in the same directory.
iv) Select the “FULL WORKLIST” button to import the worklist into Excel. Respond to the prompts as appropriate. Print when complete.
v) When compete, the list may be edited before selecting the “Export Sequence” button.
v) Input the number of the first vial in the autosampler tray when prompted, and save the sequences produced. There are 2 sequence files, LCMSXXXX and Xcal_LCMSXXXX, with XXXX being the sequence number. These should be saved to a memory stick for transfer to the LCMS.

Sample Preparation
i) Pipette 1mL of cut-off calibrator, QC or urine sample into a glass HPLC vial. If the sample has a large number of particulates, centrifuge or allow sediment to settle and pipette from the clear top layer. The internal standard volume should be 10% of the sample volume so 100µl in 1ml of sample.
ii) Add 100L of internal standard solution to each tube and mix briefly.
iii) Cap the HPLC vial using the crimpers.
iv) Load vials into the appropriate position in the autosampler tray. Repeat for all samples.

Run Preparation
i) Select EzChrom SI from the Start button or desktop. If a run is in progress, select the EZChrom (Offline) icon instead.
ii) From the FILE dropdown menu select SEQUENCE then OPEN. Select the sequence file just created (LCMSXXXX) on the memory stick.
iii) Select SEQUENCE, PROPERTIES and remove the commas from the ends of all of the path fields. Select OK.
iv) If required, the sample vial positions can be changed, for example to allow a repeated QC to be prepared once and sampled twice.
v) Save the sequence in the folder on the C:\ Drive. This is done through the. FILE, SEQUENCE, SAVE AS. In the dialogue box select the file path C:\LCMS Data\YEAR\MONTH\RUN NUMBER. Create a NEW directory for ‘current’ run, according to the proforma, Double click to open. Under the file name, enter the run number. Select SAVE.
vi) Select Xcalibur from the Start menu or desktop.
vi) From the Xcalibur Roadmap, select SEQUENCE SETUP.
vii) Select FILE and IMPORT from the drop down menu. The shortcut for this is CTRL+I.
ix) Select the created sequence file Xcal_LCMSXXXX on the memory stick.
vii) Once imported, the sequence file can be edited if required, but it is important that the samples match the EZChrom file.
ixi) Ensure that the Instrument Method is set to OPIATES and that the Processing Method is set to ToxID. Save the sequence in the C:\LCMS Data\YEAR\MONTH\RUN folder, as above. The sequence name should match the Work list name, with a .SLD extension. Do not save with a .SEQ extension, as this will overwrite the EZChrom sequence.
Starting the Run

Xcalibur:

i) Check that the Convektom gauge pressure under the VACCUUM tab is greater than 1

<table>
<thead>
<tr>
<th>Source</th>
<th>Vacuum</th>
<th>Syringe</th>
<th>Analog</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Gauge Pressure (E-5 Torr):</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convektom Gauge Pressure (Torl):</td>
<td>1.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbo Pump:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life (hours):</td>
<td>4233</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed (Hz):</td>
<td>750</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power (watts):</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (°C):</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ii) Ensure that none of the following tabs have been selected

![Tab icons](image)

iii) Select the RUN SEQUENCE icon from the Xcalibur SEQUENCE SETUP page. On the displayed pop-up, insert your initials in the USER field and change the AFTER ANALYSIS field to STANDBY. Select OK. The bottom line of the status table on the left should change from READY TO DOWNLOAD through READY TO RUN to WAITING FOR CONTACT CLOSURE.

Jasco EZChrom

i) From EZChrom, select the RUN SEQUENCE icon. Run the whole sequence or a selection of vials as appropriate. This cannot be done from the offline version of EZChrom, and must be done from the active version. Check that the run to be queued is the correct one.

ii) Watch the HPLC inject the first sample to ensure everything is working fine, and that the divert valve on the LCQ switches from WASTE to DETECTOR at between 0.5 - 1 minutes.

ToxID software

ToxID software is used to identify and report drugs on the ion trap. This identifies a drug based on the parent ion mass, the principle daughter ion intensity and the library match scores. The output is a .PDF file and a .CSV file for each sample.

ToxID can be accessed manually from the start menu, and has a number of options:

Source File
This is the .RAW data file that is to be processed

Config File
This file configures ToxID with general and drug specific parameters. See below for operation

Summary Report
Selecting short report gives an abbreviated report with up to 8 analytes per page. This is the one used by default in the Toxicology Unit. There are 2 options within this, whether to View or Print the .PDF file created. Leaving both checkboxes blank will create the .PDF & .CSV files only

Long report
The long report gives a single page report for each analyte, containing the chromatogram, acquired and library spectra, difference spectrum and library structure (if known). As for the short report, there are checkboxes for viewing and printing reports
Save
Selecting this button saves the current setup without processing the .RAW file

Process
This button causes ToxID to process the .RAW file using the specified configuration file.

Configuration File
The ToxID configuration file is a .CSV file that is best edited in Excel. The top 19 lines contain required general information, such as the laboratory name & logo, the mass and retention time windows to use, search libraries and the header row for the analyte list.

The rows below the header row should contain the following information for each drug:

Analyte
The analyte list shows each drug name with identification parameters for each. To enable correct operation, the drug name must match that found in the MS spectra library.

Parent Mass
This tells ToxID which MS2 scan filter to search

Id
Parent drug, Internal Standard or Metabolite

Product mass
This tells ToxID the mass of the most intense daughter ion, used to draw the chromatogram and use for the intensity measurement

Retention Time
The retention time ± the window specified in the header identifies where in the chromatogram to look for a peak

Intensity
Only if the daughter ion intensity is above the specified intensity threshold will a positive result be recorded

SI
The Search Index is a calculated score of the similarity of the acquired spectrum with the library spectrum. The specified value must be exceeded for a positive result to be recorded

RSI
The reverse search index is the similarity between the library spectrum and the acquired spectrum. This value must be exceeded for a positive result to be recorded

Processing LCMS Data
i) Select Xcalibur from the Start menu

ii) Select the SEQUENCE VIEW

iii) Select FILE – OPEN – select the last sequence file YEAR/MONTH/DAY/worklist print time

iv) Select BATCH PROCESS . Select the required lines to reprocess, and select the “Programs” checkbox.

v) Select OK to finish.

REQUESTING AND REPORTING OF RESULTS
Interpreting results
ToxID gives a summary report for each patient sample. Negative results are not shown, and all identified drugs or metabolites listed should be considered as potentially positive. Examine the results from the cutoff calibrator and the QC samples. This should give an estimate of the intensity threshold for positive results.

For each result in the ToxID report, check that the following applies:

i) The intensity of the analyte is similar to or above the intensity of the cutoff calibrator

ii) The chromatogram shows a peak, and is not either flat or random noise

iii) The SI/RSI values are similar and at least 400 each

In general, a drug is considered POSITIVE if the parent drug or primary metabolite pass the above criteria, and the immunoassay result (if available) gives a positive result. A result should be considered NEGATIVE if the only metabolite identified is the glucuronide, and that is only found in the MS2 spectrum.
For example, morphine glucuronide (MS2) may be reported as positive if one of the following analytes is also detected: Morphine, morphine glucuronide (MS3), acetyl-morphine.

Extra certainty about a result may be achieved through identification of several metabolites, for example, Cocaine, Cocaethylene and benzoylecgonine may all be present after cocaine use.

Entering Results

i) Log on to the laboratory information system (LIS) and enter the result under the laboratory accession number.

ii) LCMS results are recorded under the detail code “LCMS”. Record the results from the Worklist. This line is for internal lab use only, so acceptable shorthand is used. Always record Morphine results as present or absent, and any other significant spots if present.

 e.g. Mo+ Me+ cod + Morphine Positive, Methadone Positive, Codeine +
 Mo- Me+ coc + Morphine Negative, Methadone +, cocaine +

iii) Enter the longhand morphine result on the Morphine result line. Only 3 codes are used, and these are displayed on screen (POSITIVE, NEGATIVE and N/A).

iv) Repeat this for the codeine, 6-monoacetyl morphine and any other significant analytes.

v) Comments are added by selecting F11 (Comment). Chartable comments that are visible with the results are placed above the line, and should be signed by the person entering the comment. Non-chartable internal comments are placed below the line.

All patient results are entered onto the LIMS system, including research work and external quality assessment. Quality control results are recorded on the LCMS, and this data must be kept for at least 10 years.

REFERENCE RANGES

There is no numerical reference range for drug screening, as the results are reported as positive or negative and will vary according to the patient’s medication. However, drug users tend to keep taking the same drugs, and where a result does not fit in with previous drug use, immunoassay results, or where the clinical details do not match the results, extra care should be taken in interpreting the results, or repeat sample analysis to check.

LIMITATION OF THE ASSAY

Many different compounds will be detectable by LCMS, and their identities may only be safely determined with reference to a matching standard. The retention time windows and library searching should ensure that only correct analytes are reported.

The nature of the samples being tested and the reasons for the testing mean that it is probable that some patients will try to adulterate their samples to give false results. Any sample which does not look or behave as expected for a urine must be considered suspect and be brought to the attention of senior staff.

The cutoff levels are more sensitive than those used in the immunoassay, and are set at the following approximate values.

- Morphine/Morphine glucuronide: 500ng/mL
- Codeine/Codeine glucuronide: 500ng/mL
- Dihydrocodeine: 500ng/mL
- Cocaine metabolite: 150ng/mL
- Methadone: 200ng/mL
- Methadone metabolite: 200ng/mL
- Amphetamine: 250ng/mL
- Metamphetamine: 250ng/mL
INTERPRETATION OF RESULTS

Drugs will remain detectable in the urine for a varying period of time depending on the drug, the amount taken and a variety of other factors.

As a general guide, morphine, codeine and cocaine metabolites can usually be detected in urine for 3-5 days following use, although this gives no indication about the amount of drug taken.

Morphine is the main active metabolite of heroin, but is also prescribed and used itself. It is also a minor metabolite of codeine and pholcodine

6-monoacetyl morphine is the primary metabolite of heroin, but has a short half life and can normally only be detected in the urine for 12-24 hours after heroin use. Heroin (diacetyl morphine) has a half life in blood of around 2 minutes, so is very unlikely to be detected.

Codeine can be present when heroin is taken, as codeine is a common adulterant or contaminant, but it can also be taken as a medicine, available over the counter without prescription.

Dihydrocodeine is not metabolised to morphine, and the presence of morphine in a client given dihydrocodeine is an indication of extra use of opiates. Dihydrocodeine is now available as an over the counter medicine.

ANALYTES SEEN IN QUALITY CONTROL MATERIAL

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>Negative</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphetamine</td>
<td>NEG</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
</tr>
<tr>
<td>Metamphetamine</td>
<td>NEG</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
</tr>
<tr>
<td>MDEA</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>POS</td>
</tr>
<tr>
<td>MDMA</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>POS</td>
</tr>
<tr>
<td>Cocaine-Benzoylcgonine</td>
<td>NEG</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
</tr>
<tr>
<td>Methadone</td>
<td>NEG</td>
<td>NEG</td>
<td>POS</td>
<td>POS</td>
</tr>
<tr>
<td>Codeine</td>
<td>NEG</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
</tr>
<tr>
<td>Morphine-3-glucuronide</td>
<td>NEG</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
</tr>
<tr>
<td>PPA</td>
<td>NEG</td>
<td>NEG</td>
<td>POS</td>
<td>POS</td>
</tr>
</tbody>
</table>

REFERENCES

Clarke’s Analysis of Drugs and Poisons 3rd Ed. (2004) Ed. AC Moffat, MD Osselton, B Widdop

Xcalibur and Jasco EzChrom software manuals
APPENDICES
PROCEDURE AMENDMENT FORM

<table>
<thead>
<tr>
<th>Number</th>
<th>Date</th>
<th>Page No</th>
<th>Amendment</th>
<th>Authorised by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The amendment must be authorised by the author of the procedure
- The amendment must be underlined and an asterisk written in the margin along side the change
- Up to ten minor amendments can be made before the procedure is revised
- Major changes must result in the immediate review of the procedure
<table>
<thead>
<tr>
<th>SIGN</th>
<th>PRINT NAME</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>