Please, talk about it! When also negative popularity boosts preferences

Giampaolo Viglia, Roberto Furlan & Antonio Ladrón-de-Guevara

ABSTRACT

Many consumers post online reviews, affecting the average evaluation of products and services. Yet, little is known about the importance of the number of reviews for consumer decision making. We conduct an online experiment (n=168) to assess the joint impact of the average evaluation, a measure of quality, and the number of reviews, a measure of popularity, on consumer behaviour. Results show that consumers’ preference increases with the number of reviews, independently of the average evaluation being high or low. This is not what one would expect from an informational point of view and review websites fail to take this pattern into account. This novel result is mediated by demographics: young people, and in particular young males, are less affected by popularity, relying more on quality. We suggest the adoption of appropriate ranking mechanisms to fit consumer preferences.

INTRODUCTION

The way in which both software developers and consumers use the internet is continuously changing towards an increasing management of user-generated content. This “collaborative” vision of the web, promoting a place where users can interact and share information, was coined about a decade ago with the term Web 2.0. Examples of Web 2.0 include social networks, video-sharing sites, forums, wikis, blogs, and other sites managing user-generated information. In this dynamic world of online marketing, the traditional influence of word of mouth has been fiercely amplified by the impressions from consumers posting their experience with products and services in social media websites.

Since Amazon.com Inc. started posting customer ratings and product reviews in 1995, most online businesses have realized that allowing customers to post reviews can increase sales and help suppliers identify problems with their products and services. These information tools are being used by consumers who increasingly search and read comments and reviews from peers, facilitating choices and purchase decisions. In its last Trust Barometer 2013, public-relations firm Edelman asked survey respondents across 20 countries how credible the information about a company was, depending on the informer. A total of 61% of respondents attributed high credibility to “a person like yourself”, compared to only 49% to “regular employees” and 40% to “the company’s CEO”. A previous survey
conducted in 2011 by public-relations firm Weber Shandwick found that traditional word-of-mouth (88%) and online reviews (83%) ranked as top factors, being “very” or “somewhat” influential on consumer perceptions about companies.

Within the service sector, travel remains as one of the fastest growing industries in e-commerce spending. ComScore Inc, a global research firm that tracks online traffic, reported that the travel category attracted 124 million visitors in January 2012, with an increase of 8% with respect to the previous year.

All the above phenomena combine in the form of travel review websites, revolutionizing the manner in which word-of-mouth opinions and recommendations on holiday destinations can be discussed and disseminated (Litvin et al., 2008).

Some review websites have become important obligatory points of passage. An example of the culmination of such online commentaries is the creation of ranking lists, such as the Trip Advisor Popularity Index, a clear numbering system which instantly signals a hotel’s level of quality and service to satisfy consumers (Jeacle and Carter, 2011). In this paper we focus our attention on popularity, in terms of the number of reviews written by people, to understand how it affects consumer decision making and how it interacts with consumer’s online reputation, a widely used measure of quality (Abrate et al., 2011; Hu et al., 2006; Koh et al., 2010).

Consumer reviews’ relevance

The importance of reviews is rather different in experience and search goods. Experience goods are products that require sampling or purchasing in order to evaluate the product quality, because there is the need of using one’s senses to evaluate quality. Examples of experience goods include music (Bhattacharjee et al., 2006; Nelson, 1970) or wine (Klein, 1998). Search goods are those for which consumers have the ability to obtain relevant information on product quality prior to purchase. Examples of search goods include cameras (Nelson, 1970) or medication (Weathers et al., 2007). The dominant attributes of an experience good are compared or evaluated subjectively and with more difficulty (Huang et al., 2009). However, the relevant characteristics of a search good can be evaluated and compared easily and in a more objective manner, without buying or sampling the product. Because the Internet enables consumers to learn from the experiences of others and to gather product information that is often hard to obtain in offline settings (Klein, 1998; Lynch and Ariely, 2000), all attributes tend now to be searchable at low cost, reducing the difference between search and experience goods. This “merging process” was initially highlighted by Alba et al. (1997) who suggested that all
products involve a bundle of search and experience attributes. Hotel rooms fit perfectly in this framework: traditionally considered as experience goods for the difficulty to gather exact information, they are now moving toward search goods because now travellers can judge if a room is suitable for them beforehand, looking for information online through rating sites (Tse, 2003).

Nonetheless, there are still some differences between search and experience goods. For search goods, the content and detail of the review itself is considered crucial (Jimenez and Mendoza, 2013; Mudambi and Schuff, 2010). The idea is that an in-depth review with search goods is highly diagnostic. On the contrary, for experience goods, the social weight provided by the number of comments can also be an important factor affecting consumer choice.

It has been shown that positive reviews have an effect in increasing the number of bookings and the economic results (Chavaler et al., 2006; Godes and Mayzlin, 2009; Ye et al., 2009) but the specific relevance of the number of reviews should also be taken into consideration when hotel travel websites present the ranking of hotels. Spoerri (2008) showed that only information placed high in the list is considered relevant; the relevance of the information decreases exponentially when presented in lower positions. Breese et al. (1998) confirmed the exponential decay of attention. A first effort to model ranking considering popularity was done by Chen (2009). Of primary importance is also the role of negative reviews: while several studies examined the content of negative consumer reviews on the web, how to deal with it, and the effect on perceived company reliability (Chatterjee, 2001; Noort and Willemsen, 2012; Sen and Lerman, 2007), to the best of our knowledge only one study discussed the controversial effect of negative popularity on preferences (Vermeulen and Seegers, 2009). The findings of this study suggest that negative reviews decrease consumers’ attitudes towards that alternative but also increase consumers’ awareness towards the same alternative, leaving for further research the overall effect on preference.

Reducing uncertainty or following the crowd

According to social comparison theory (Festinger, 1954) individuals have a drive to compare themselves to other people, which can lead for example to selecting popular alternatives in the belief that the majority is right (Denrell and Le Mens, 2012). Consumers look at other consumers for social clues as choices may be seen as a statement about individual values and taste (Mudambi and Schuff, 2010). In our analysis we use the number of reviews of a hotel as a proxy for popularity, and we consider consumer’s probability to post a review on the travel websites constant across hotels. These
assumptions are reasonable and already used in the literature (Ye et al., 2009) because the majority of travel review websites allow posting one review per transaction only after the check-out.

There are at least two possible explanations of why people prefer to see many reviews. Firstly, a large number of reviews can lead consumers to feel more sure of their purchase decision. When more reviews are present, consumers increase the behavioral intention because they perceive the set of information to be more informative (Park et al., 2007; Petty and Cacioppo, 1984), reducing the uncertainty and the perceived risk (Klein, 1998). Another possible explanation, when people tend to go with the crowd, is the so-called bandwagon effect, a behaviour in which people tend to go along with others without considering their individual preferences (Leibenstein, 1950; Ajzen, 1991). Intuitively, an individual who believes a popular alternative to be poor might still choose that alternative anyway because it is popular. Sociologists would distinguish between the normative and informational facets of social influence, where the former compels a person to do as others do to conform to the expectations of others, while the latter represents the influence that leads to accepting information obtained from others as evidence about reality (Deutsch and Gerard, 1955). In this paper we use the term “normative” according to the above definition. Review websites, such as Trip Advisor, rank generally their hotels based on informational criteria, considering the number of reviews as a measure of the reliability of the different evaluations. In principle, one can disentangle whether people endorse popular choices just to go with the others or to reduce informational uncertainty. In the hotel scenario, for example, when a high number of reviews is present but the online reputation is low, popularity would still boost preferences if people simply want to go with the crowd. If, on the contrary, people believe that the number of reviews has only an informative effect, then for low reputed hotels a high number of reviews would have a negative effect on preference, with the high number of reviews being a guarantee that the hotel is bad. These considerations lead to a first general hypothesis for this paper:

H1. Popularity, measured through the number of reviews, affects people’s preferences

In addition, based on the theoretical background presented above, we can also derive two alternative hypotheses. On the one hand, according to informational social theory and what online review websites generally do, we can expect that:

H2a. Because of informational social influence, the impact of popularity is expected to be positive when quality, measured as the average online rating, is high and negative when quality is low
On the other hand, the bandwagon effect and the normative facets of social influence would lead us to predict that:

H2b. Because of normative social influence, the impact of popularity should be positive, regardless the level of quality

If the two effects presented above moderate each other we would expect that:

H2c. A high number of reviews increases the ranking of well reputed alternatives more than of less reputed ones

The cost and value of seeking unbiased reviews and their effects on individual differences

Traditional media normally use professional experts to review products or services. While prior evidence suggests that expert reviews are more persuasive than non-expert ones (Petty and Cacioppo, 1984), information delivered by a non-marketer source has been shown to be credible (Herr *et al.*, 1991). On the internet, many reviews are consumer generated and fellow opinions are considered more comparable and less biased (Bickart and Schindler, 2001), favouring the increasing demand for unbiased information and the boom of consumer generated reviews (D’Ambre and Wilson, 2004).

Reading reviews easily accessible to all internet users may help consumers in choosing (Dellarocas, 2003). However, seeking information is costly and time consuming and there are trade-offs between the perceived cost and the benefit of search (Stigler, 1961) and between the invested effort and the accuracy of the decision (Johnson and Payne, 1985). Consumers tend to search for information until the marginal cost equals the marginal benefit (Huang *et al.*, 2009). For these reasons, they are willing to use numerical content ratings to save cognitive resources and to reduce energy expenditure. The star rating has been shown to serve as a numeric clue for the review content, especially for users familiar with the Internet (Kulkarni *et al.*, 2012; Poston and Speirer, 2005). Noteworthy, reported average star ratings are specially useful for experience goods, where review depth has been shown to be less relevant (Mudambi and Schuff, 2010). In addition, the use of just one important attribute was shown to be positively correlated with the value of saving time and cognitive resources (Payne *et al.*, 1996). In consumer research people were shown to have different invested times when evaluating products or services (Okada, 2005). Meyers-Levy (1988) argued that males had
a tendency not to process all available information as a basis for judgment, taking decisions more quickly than females. In contrast, females rely on a broad variety of information and they usually attempt an elaboration of all available information unless they are restricted by memory constrains. In the hotel and food industry, decision making processes were shown to be more time consuming among females and high age groups. (Barber et al., 2006; Han et al., 2009). Based on the above arguments and on the evolutionary psychology literature on impulsiveness (Cross et al., 2011; Wilska, 2003) we argue that there is a demographic effect in the trade-off between using multiple pieces of information and saving time and cognitive effort. We therefore hypothesize that,

H3: People from different ages and gender will use different strategies according to their willingness to invest time. This may influence the way people are affected by popularity

METHOD

An online experiment was conducted to test the above hypotheses.

Participants

We targeted, with an email invitation, a population of young and middle-aged people familiar with internet technologies. We reasonably assumed that this population, well balanced between males and females, is suitable to represent the online users of travel websites.

Participants accessed and took the online experiment through a link that was sent to them from December 2012 to January 2013. A modest financial incentive, a 25 euros mobile phone voucher sent to three randomly extracted respondents, was provided to reward participants for their time and contribution to the study.

Of the 168 individuals who participated in the online experiment, 161 respondents passed data-quality checks. The excluded respondents consisted of those who failed to pass the Kendall’s tau test for consistency in the conjoint exercise (see section Analysis). Table 1 reports the demographics of the respondents included in the analysis. Regarding the variable age, we categorized people in two groups, young and old, based on a threshold at age 25. This threshold is in line to what is generally used for the consumer adoption of new technologies in marketing (Pagani, 2004; Wood, 2004).

[Table 1 here]

Apparatus
Visual stimuli, as suggested by Holbrook and Moore (1981), were used instead of more traditional method of using verbal descriptions of the products and their relative attributes. Thus, we created illustrations adapted from the website TripAdvisor.com. Figure 1 shows an example of the cards presented to a respondent.

[Figure 1 here]

Procedure

Once participants accessed the website, they were informed that they were going to rank their preferences regarding hotels based on two dimensions: the number of reviews and the online reputation score which, as mentioned before, represented the constructs of popularity and quality respectively. Participants were told that they would evaluate 15 cards with different situations. Before assessing the 15 cards, the form elicited information on participants’ demographical characteristics (gender and age). After the whole process, we asked them to leave comments, if any, regarding the clarity of the instructions and the strategies used to come up with a decision.

Design

A rank conjoint experiment, which measures the importance of the features of a good or service by asking respondents to rank different scenarios within the choice set (Green and Rao, 1971; Gustaffson et al., 2001), was adopted for the framework of this study. The goal was to elicit the weight respondents give to quality (score/rating) and popularity (number of reviews) when browsing hotel comparison websites with the intention to book a hotel. Through careful consideration and examination of hotel comparison websites, we decided to operationalize quality and popularity at 7 levels (Table 2). For quality, we included all ratings from 2 to 5 in 0.5 unit increments, as half ratings are quite common on hotel comparison websites and the typical range of reviews goes from 2 to 5 (Mazzarol et al., 2007). For popularity, we included a very large range of reviews, from 1 to 4096 through a geometric progression with common ration 4, to conform to empirical previous results where the effect of popularity on sales was shown not to be linear and of a similar range (Chevalier and Mayzlin, 2006; Forman and Batia Wiesenfeld, 2008).

[Table 2 here]

Using combinations of one level from each of these two attributes to characterize a scenario, there are 49 (7 x 7) different hotel profiles that could be generated. However, in order to ensure feasibility of
the conjoint exercise, to maximize participation, and to avoid respondents’ fatigue, we decided to expose respondents to subsets of 15 scenarios only. Therefore, based on Dean and Voss (1999), 15 different hotel profiles were generated from the 49 possible scenarios. Each respondent was randomly assigned to one version and was exposed to all 15 profiles within the selected version. We considered this design to be appropriate, in relation to the sample size, to allow robust estimation of linear, quadratic, and cubic effects for quality, popularity, and their interaction term. Each respondent was exposed to all 15 scenarios at the same time, so that he or she could make appropriate comparisons and assign the rank to each profile, from 1 (most preferred scenario) to 15 (least preferred scenario). To confirm the feasibility and simplicity of the task, none of the respondents complained about the length, complexity, or composition of the questionnaire.

Analysis

In the conjoint framework adopted for this project, we assume that a respondent’s ranking of each scenario can be decomposed into the sum of contributions from the various attributes. For each attribute, the contribution is the part-worth associated to the level describing the scenario. In other words, the part-worth is the marginal utility of the attribute in the individual’s ranking of the conjoint scenario. Main outcome of conjoint analysis is the estimation of the part-worth associated to each level of each attribute considered in the conjoint design.

We used hierarchical Bayes (HB) regression (for review, see Rossi et al., 2005) to estimate the part-worths associated to the levels of the two attributes included in the study. This approach avoids potential estimation bias from unobserved preference heterogeneity in rank-conjoint by estimating a distribution of preferences for each parameter in the model. HB part-worths are estimated for each respondent (individual-level analysis). The coefficients from this regression model were also the basis for the estimation of the relative importance of the attributes of the study. HB coefficient estimation was conducted using the function estimate.Rank.VaryingTasks available in the package R-sw Conjoint (Demia Studio Associato, 2012), the only package we are aware of especially dedicated to the analysis of rank conjoint data.

To select the most appropriate model for the data, we tested a number of alternative formulations. While in most conjoint studies interaction levels effects are often disregarded as they add complexity to both the design and the analysis, we thought considering and testing them to be essential, as we believed that the preference associated to quality depends on popularity. In addition, for each partial utility we extended the standard linear specification, proposing a nested structure that allows for quadratic and cubic terms. In fact, we believed that preference might not necessarily be linearly
associated with quality and/or popularity. Model selection was based on the Akaike information criterion (AIC), a popular measure of the relative goodness of fit of a model (for review, see Bozdogan, 1987). At the core of the AIC there is the sum of squared residuals, where a residual is the difference between the observed rank of a conjoint scenario and its estimated rank. The model selection process led us to identify the following model as the best one: quality (quadratic), popularity (quadratic), interaction quality by popularity (linear).¹

Analysis of the observed and the estimated ranks was also used to identify inconsistent respondents to be excluded from the subsequent analysis. More precisely, we computed Kendall’s tau rank correlation coefficient, a statistic commonly used to measure the similarity of the orderings of two measured quantities, between the observed and estimated rank of each of the scenarios respondents have been exposed to. By computing a Kendall’s tau coefficient for each participant, we could identify 7 respondents with a low score, an evident sign of poor data quality. We decided to exclude them from the original sample of 168. Reasons for a low Kendall’s tau coefficient could be lack of understanding of the exercise, low motivation or lack of engagement. Fatigue, which is a typical cause of poor data quality in conjoint experiments, can be safely excluded from the likely sources of inconsistency for this study as interviews required at most 7 minutes.

RESULTS

After obtaining the individual-level part-worths for the two attributes and their interaction term, we obtained the total preference in terms of rank for each possible scenario for each respondent and then we averaged the results over the whole sample.

Quality versus popularity

We used conjoint analysis to estimate the relative importance of the studied attributes. In particular, relative importance of an attribute is a function of the variation in preference associated with a variation in the attribute’s levels. In other words, the bigger difference between the highest and the lowest utility levels of an attribute, the more significant its partial contribution to preference. This can help us to test H1, showing the relative importance of popularity.

[Figure 2 here]

¹ Detailed information on the model selection exercise is available on request
Figure 2 shows the average impact for the two stimuli: quality and popularity. It is apparent that quality is the most important stimulus with an average impact score of 67.4%. However, popularity counts quite a lot, 32.6%.

Figure 3 shows the preferences of the stimulus levels for quality and popularity. The direction of the arrows represents the transition of the underlying dimension from low to high. It is worth recalling here that popularity is measured in geometric progression (i.e., from 1 to 4096 reviews) then changes of one level in popularity measure the impact on preference of two consecutive values of that scale. Quality is confirmed to be the main driver for preference. As one would expect, low quality is associated with low preference and high quality with high preference. This association is clearly non-linear: impact of quality on preference is high for low quality levels and it decreases for higher quality levels, showing decreasing returns. There is also a clear interaction with popularity. In fact, impact of popularity on preference is higher when quality is high, while the impact is considerably lower, but still positive, when quality is low. If we take the point where quality is at the minimum level, 1, and popularity at its maximum, 7, we can see that this condition is significantly preferred to the one where both quality and popularity are at their minimum, 1 ($t(160) = 17.18, p < .001$).

These results support and go beyond H2c: not only the effect of popularity is not symmetric, being different in absolute value when quality is high or low, but it is always positive, giving credit to the theory that people tend to go with the crowd. Therefore, H2a, the negative role of popularity when quality is low is not supported by the analysis. The role of normative social influence, H2b, is indeed more relevant.

The impact of heterogeneity of respondents’ preference on the overall ranking of hotels

In order to investigate to what extent quality and popularity impacted differently depending on the type of respondent, participants were categorized in relation to their demographics. Results for the demographic segments are presented in Table 3.

Young male respondents tend to consider mostly quality when making a ranking decision. Their preferences differ significantly from older males ($t(84) = 7.63, p < .001$), young females ($t(74)=9.46, p < .001$) and older females ($t(87)=11.24, p < .001$). Young females perform similarly to older males while
older females differ significantly in their preferences from younger females \((t(73)=3.19, p<.005)\),
taking more into account the number of reviews when booking a hotel.

To strengthen the heterogeneity analysis we identified homogeneous groups through segmentation
analysis. Based on the individual-level part-worths for the two attributes and their interaction term, we
run a segmentation analysis to identify groups of respondents with similar preference functions. In
particular, we used latent class analysis (LCA) which is a statistical method for finding groups or
subtypes of related cases (latent classes) in multivariate data (for review, see Bartholomew et al., 2011;
Hagenaars and McCutcheon, 2005). Input variables for the LCA were the part-worth utilities which
characterize the preference in choosing a hotel based on number of reviews and average of consumers’
reputation. We chose a solution based on the average weight of evidence (AWE) because this metric
combines information on model fit and information on classification errors (Banfield and Raftery,
1993; Celeux et. al., 1997). The chosen solution, the one with the lowest AWE, is characterized by
three groups. Table 4 shows the size of the groups and their profiling in terms of importance scores and
demographics. Figure 4 shows the preferences of the stimulus levels for quality and popularity for each
of the three groups.

[Table 4 here]

[Figure 4 here]

Group 1 is predominant and is characterized by people who take into account both quality and
popularity when making a choice, with quality however being around twice as important as popularity.
Group 2 considers quality as the main driver of choice while popularity clearly plays only a little role.
For group 3, popularity plays a major role, being almost as important as quality in the decision process.
There is a clear interaction effect: popularity gains importance for high levels of quality in group 1 and
group 3, while in group 2 the effect of popularity remains low across all the levels of quality. We can
clearly see from Table 4 that the second group is mainly composed by young males while older females
are predominant in group three. The first group, which is the biggest one, is more heterogeneous and
primarily composed by young females and old males. These results confirm that the demographical
profile is a clear driver of choice.

Time and decision making

The third hypothesis was suggesting that demographics can have a role in the strategy taken to
come up with a decision and this could affect the extent to which people are affected by popularity. In
order to test for it, it was first measured if some groups where focusing only on one attribute to come out with a decision. To do so, we artificially created a ranking based on lexicographic preferences. Under this ordering structure, consumers strictly prefer a higher quality level, considering popularity to have an effect only when quality is equal among hotels. This ranking was then correlated with the actual ranking stated by participants. The most used measure of correlation for rank data, Kendall's tau coefficient, was higher in the young male group (M = .89, SD = .0733698) than in the other groups (M = .79, SD = .12). This difference was significant by means of t test, \(t(159) = 5.22, p < .001 \).

A two-way ANOVA examined the amount of time spent to complete the task across our demographic segments. Invested time differed significantly across gender (\(p < 0.001 \)) and age (\(p < 0.001 \)), while there was no significant interaction between gender and age. Tukey post-hoc comparisons indicate that the young male group (\(M = 3.4, 95\% \text{ CI} [3.10\text{ }3.69] \)) invested less time than all the other groups. On the opposite, older females invested more time than all the other groups. Figure 5 presents graphically the whole set of results.

[Figure 5 here]

Open-ended Remarks and Considerations

The open-ended remarks were further examined by the investigators in order to understand the basis of the respondents’ decisions. Here we present some of the open-ended remarks of the respondents by topic.

A great majority is arguing that a high stated quality without enough reviews may be a signal of unreliability. Interestingly, some respondents identified a threshold of popularity to be trustable.

Respondent #114: “4 reviews are not enough to be trustable. A larger number of reviews reduce the uncertainty”

Respondent #130: “with more than 100 reviews I can trust it”

A considerable number of participants elaborated that price is another key variable, even more important among the youngest group, constrained by limited budget. Further, the content of the review itself is relevant for some participants, even more than the number of reviews.

Respondent #55: “I also consider the content of the review”

Respondent #112: “I would like to see the detailed review”

Respondent #119: “I also take into consideration the price, and the location of the hotel”
These comments conform to the theory that reviews are indeed informative (Li and Hitt, 2008) and the content of the reviews needs to be properly investigated.

Concordant to Hypothesis 1, participants’ comments confirmed that hotel consideration significantly increases when the number of reviews is high. The finding, supported by the quantitative analysis, of a positive effect of popularity even when the online reputation is negative was not present in respondents’ comments. Based on some respondent comments the opposite would be true.

Respondent #129: “Many negative reviews are a signal that the hotel is really bad”

Respondent #140: “If the hotel has many reviews and low quality average it means it is really bad”

These comments provided by few respondents and to be discussed in the next section, would favor H2a, hypothesis that was not supported by the above quantitative analysis.

DISCUSSION OF RESULTS AND LIMITATIONS
The findings of this study show that, whereas the average reputation is the most influential stimulus when assessing a hotel, the popularity, measured as the number of reviews, has also a great impact on preferences. In particular, here we highlight the exact relevance of the number of reviews for different levels of online reputation, showing that popularity has, on average, a positive effect which becomes larger for high levels of online reputation. This can help to explain that, although the informative effect of something being popular may play a role, normative social effect, and then popularity per se, is relevant. Interestingly, while few participants argued that negative popularity, i.e. many bad reviews, has a negative effect on their preferences, there is a large silent majority that does not comment the reasons of their behavior but it presents a tendency to consider even negative popularity as a signal of quality. This behavior goes against the value of information: more reviews should be more informative, therefore more bad reviews should strengthen the idea that the hotel is really bad. Also, based on real world evidence, review websites, such as Trip Advisor, are ranking according to informational social influence. In this analysis we found that this is not the way people process information.

Heterogeneity across respondents plays a role. Demographics are indeed a mediator of the impact of popularity. While young males tend to save time considering just the most relevant attribute, quality,
confirming previous literature on impulsiveness, all the other demographic groups and in particular older females are weighting popularity much more when they have to state their preference.

Our study is not without limitations. First, even if we tried to create a sample which can represent the population of online users of travel website, the composition of the sample is not a perfect replication of online users of travel websites. Second, participants were responding to a scenario and not actually booking and spending their own money. However, the use of a simulated consumer experience does not necessarily weaken internal and external validity as previous studies reported (Louviere and Woodworth, 1983; Lynch, J. G., 1982). In addition, by using controlled conditions we show how changes in rankings are actually caused by variations in popularity. Third, additional consumer information such as the frequency of booking online and variables such as hotel location and price could have been added to the study. This would have added detail to the general picture, but would have gone beyond the scope of this research. Finally, the scenarios do not show the distribution of the hotels ratings. Two similar medium quality hotels in terms of online reputation can be the result of midpoint ratings or the result of balancing ratings and this could potentially have an impact on consumer choice (Eisend, 2006; Purnawirawan et al., 2012).

CONCLUSIONS AND IMPLICATIONS

The wealth of available information on the internet has increased the need to allocate the attention across the abundance of information sources. This research contributes to knowledge development in consumption and in the hospitality industry by examining the impact of popularity, measured as the number of reviews, and quality, measured as online reputation, provided by former consumers. We were particularly interested in testing if consumers tend to prefer popular alternatives even if the crowd they are following defines those alternatives as poor and if these effects vary across demographics. Our results reveal that the presence of many reviews, despite the online evaluation of the review itself, creates a positive shift on preference and that something being popular affects preferences more among females and older people. A vast majority chooses based on the normative social influence, while some people go with the informational social influence. We find a silent majority that prefers alternatives rated as bad by many other consumers than alternatives which are rated again bad but by fewer consumers. This behavior goes against the value of information because the judgment of multiple others should provide more certainty about the real quality of a service (Huang and Chen, 2006), as a “talkative minority” argues explaining how it came out with a preference. Other studies on silent
majorities in consumption often deal with no complainers who experience service failure (Chebat et al., 2005; Sheth et al., 2000; Voorhees et al., 2006).

In order to take into account the preferences of the vast majority, effective ranking mechanism has to be applied. If you manage a ranking website showing different hotels, on one hand our results seem to indicate that quality is, relative to popularity, the most efficient stimulus across all the segments. On the other hand, ranking mechanisms have to reflect the popularity effect adequately. Popularity has a great impact toward females and older consumer segments, although still relatively less important than quality. So, if you are creating rankings dealing mostly with consumers groups that consider popularity as a key variable, focusing on both quality and popularity would be necessary. Some psychological extensions of this study can be assessed in future studies. In particular, while males and females were already shown to differ in the way they are influenced by others and how this effect is moderated by time constraints (Mitchell and Walsh, 2004), it would be important to better understand the boundary conditions of such a behavior.

This study provides useful implications for hospitality and review website managers. Considering that hotels are facing intense competition due to a stagnant economy, managers need to improve their marketing strategies to enhance the popularity of their hotels. As in Bennet and Rundle (2004), we find that the rating of online reputation is important but it is not enough. We clearly show that the review being good or bad is not the only relevant element; what is also important is having a large volume of reviews. One possible explanation is that popularity is more likely to attract the interest of online consumers (Zhang et al., 2010). Another explanation is that people may infer a high number of reviews as a signal of something valuable to try and not as a sum of negative experiences.

REFERENCES

TABLES AND FIGURES

Table 1 - Demographics of the respondents included in the analysis

<table>
<thead>
<tr>
<th>Age \ Gender</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><25 yo</td>
<td>45</td>
<td>31</td>
<td>76</td>
</tr>
<tr>
<td>25+ yo</td>
<td>41</td>
<td>44</td>
<td>85</td>
</tr>
<tr>
<td>Total</td>
<td>86</td>
<td>75</td>
<td>161</td>
</tr>
</tbody>
</table>

Figure 1 – Screenshot of the cards presented to a respondent
Table 2 – Attributes and levels included in the conjoint exercise

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Level 6</th>
<th>Level 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
<td>4.5</td>
<td>5.0</td>
</tr>
<tr>
<td>Number of reviews</td>
<td>1</td>
<td>4</td>
<td>16</td>
<td>64</td>
<td>256</td>
<td>1024</td>
<td>4096</td>
</tr>
</tbody>
</table>

Figure 2 – Relative importance scores

![Importance scores](importance_scores.png)
Figure 3 – Rank preference for any combination quality – popularity (n=161)

Table 3 – Relative importance scores

<table>
<thead>
<tr>
<th>Gender</th>
<th>Total</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><25 yo</td>
<td>25+ yo</td>
<td><25 yo</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample size</td>
<td>161</td>
<td>45</td>
<td>41</td>
</tr>
<tr>
<td>Quality</td>
<td>67.4%</td>
<td>77.7%</td>
<td>64.3%</td>
</tr>
<tr>
<td>Popularity</td>
<td>32.6%</td>
<td>22.3%</td>
<td>35.7%</td>
</tr>
<tr>
<td>st dev</td>
<td>10.4%</td>
<td>5.1%</td>
<td>10.5%</td>
</tr>
</tbody>
</table>

Table 4 – LCA groups with profiling

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61</td>
<td>66.0%</td>
<td>34.0%</td>
<td>4.4%</td>
<td>53.7%</td>
<td>93.5%</td>
<td>18.2%</td>
</tr>
<tr>
<td>2</td>
<td>51</td>
<td>77.3%</td>
<td>22.7%</td>
<td>95.6%</td>
<td>14.6%</td>
<td>6.5%</td>
<td>0.0%</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
<td>58.8%</td>
<td>41.2%</td>
<td>0.0%</td>
<td>31.7%</td>
<td>0.0%</td>
<td>81.8%</td>
</tr>
</tbody>
</table>
Figure 4 – Rank preference for any combination quality – popularity for each group

Group 1

Group 2

Group 3
Figure 5 - Invested time across demographic groups

![Bar chart showing invested time across male and female demographics.](image-url)