GENETIC PROGRAMMING HYPER-HEURISTIC FRAMEWORK FOR INC*

Evolving Effective Incremental Solvers for SAT

First
Author Affiliation
Second Line of Affiliation
firstauthor@myuniv.edu

Second Author
Author Affiliation
Second Line of Affiliation
secondauthor@anotheruniv.edu

Abstract
Hyper-Heuristics could simply be defined as simply defined as heuristics to choose other heuristics, and it is a way of combining existing heuristics to generate new ones. In this paper we are using a grammar based genetic programming in a Hyper-Heuristic framework, the framework is used for evolving effective incremental (Inc*) solvers for SAT.

We test the evolved heuristics (IncHH) against other known local search heuristics on a variety of benchmark SAT problems.

Keywords: Genetic Programming, Hyper-Heuristic, Inc*, SAT, Heuristics.

Introduction

Heuristics methods have contributed in the solution of many combinatorial optimization problems such as packing, travel salesman problem (TSP), graph colouring, satisfiability problem (SAT). The performance of these heuristics on a problem varies thought the time of the search, and also varies from one instance to another. Hyper-heuristics aim to provide a more general approach aims to raise the level of generality at which optimisation methods can operate. They can be defined as heuristics to choose heuristics Burke et al., 2003a. The main idea is to make use of different heuristic during the search for a solution.

SAT is one of the most studied combinatorial optimization problems, and the first problem proofed to be an NP-Complete problem. In This paper we will be
using genetic programming (GP) in a Hyper-Heuristic framework to evolve not just a SAT heuristic but a SAT heuristic that could suit more the Inc* algorithm, where the Inc* is a general algorithm that can be used in conjunction with any local search heuristic and that has the potential to substantially improve the overall performance of the heuristic. The general idea of the algorithm is the following. Rather than attempting to directly solve a difficult problem, the algorithm dynamically chooses a smaller instance of the problem, and then increases the size of the instance only after the previous simplified instances have been solved, until the full size of the problem is reached. This could also demonstrate the capability of the HH framework of making use of the current hand crafted heuristic in generating and problem specific heuristic. We have divided this introduction to two main parts the first will talk about the SAT problem and most know heuristics that deal with it. In the second we will give an over view of the HH frameworks.

SAT problem

The target in the satisiability problem (SAT) is to determine whether it is possible to set the variables of a given Boolean expression in such a way to make the expression true. The expression is said to be satisfiable if such an assignment exists. If the expression is satisfiable, we often want to know the assignment that satisfies it. The expression is typically represented in Conjunctive Normal Form (CNF), i.e., as a conjunction of clauses, where each clause is a disjunction of variables or negated variables.

There are many algorithms for solving SAT. Incomplete algorithms attempt to guess an assignment that satisfies a formula. So, if they fail, one cannot know whether that’s because the formula is unsatisfiable or simply because the algorithm did not run for long enough. Complete algorithms, instead, effectively prove whether a formula is satisfiable or not. So, their response is conclusive. They are in most cases based on backtracking. That is, they select a variable, assign a value to it, simplify the formula based on this value, then recursively check if the simplified formula is satisfiable. If this is the case, the original formula is satisfiable and the problem is solved. Otherwise, the same recursive check is done using the opposite truth value for the variable originally selected.

The best complete SAT solvers are instantiations of the Davis Putnam Logemann Loveland procedure Davis et al., 1962. Incomplete algorithms are often based on local search heuristics (see Section). These algorithms can be extremely fast, but success cannot be guaranteed. On the contrary, complete algorithms guarantee success, but they computational load can be considerable, and, so, they cannot be used for large SAT instances.
Algorithm 1 General algorithm for SAT stochastic local search heuristics

\[L = \text{ initialise the list of variables randomly} \]
\[
\text{for } i = 0 \text{ to MaxFlips do}
\]
\[
\quad \text{if } L \text{ satisfies formula } F \text{ then}
\]
\[
\quad \quad \text{return } L
\]
\[
\quad \text{end if}
\]
\[
\quad \text{select variable } V \text{ using some selection heuristic}
\]
\[
\quad \text{flip } V \text{ in } L
\]
\[
\text{end for}
\]
\[
\text{return no assignment satisfying } F \text{ found}
\]

Stochastic local-search heuristics. Stochastic local-search heuristics have been widely used since in the early 90s for solving the SAT problem following the successes of GSAT Selman et al., 1992. The main idea behind these heuristics is to try to get an educated guess as to which variable will most likely, when flipped, give us a solution or to move us one step closer to a solution. Normally the heuristic starts by randomly initialising all the variables in the CNF formula. It then flips one variable at a time, until either a solution is reached or the maximum number of flips allowed has been exceeded. Algorithm 1 shows the general structure of a typical local-search heuristic for the SAT problem. The algorithm is normally repeatedly restarted for a certain number of times if it is not successful.

The best heuristics of this type include:

- **GSAT:** Selman et al., 1992 which, at each iteration, flips the variable with the highest gain score, where the gain of the variable is the difference between the total number of satisfied clauses after flipping the variable and the current number of satisfied clauses. The gain is negative if flipping the variable reduces the total number of satisfied clauses.

- **HSAT:** Gent and Walsh, 1993 In GSAT more than one variable may present the maximum gain. GSAT chooses among such variables randomly. HSAT, instead, uses a more sophisticated strategy. Its selects the variable with the maximum age, where the age of the variable is the number of flips since it is was last flipped. So, the most recently flipped variable has an age of zero.

- **GWSAT:** Selman and Kautz, 1993 with probability \(p \) selects a variable occurring in some unsatisfied clauses while with probability \((1 - p) \) flips the variable with maximum gain as in GSAT.

- **WalkSat:** Selman et al., 1994 starts by selecting one of the unsatisfied clauses \(C \). Then it flips randomly one of the variables that will not break
any of the currently satisfied clauses (leading to a “zero-damage” flip). If none of the variables in C has a “zero-damage” characteristic, it selects with probability p the variable with the maximum score gain, with probability $(1 - p)$ a random variable in C.

- Novelty: Hoos and Stützle, 2000 After selecting a random unsatisfied clause, novelty flips the variable with highest score unless it was the last variable flipped in the clause, if this is the case with probability p the same variable is flipped, otherwise a random clause from the same clause is selected.

Evolutionary algorithms and SAT problem. Different evolutionary techniques have been applied to the SAT problem. There are two main research directions: direct evolution and evolution of heuristics.

An example of methods in the first direction – direct evolution – is FlipGA which was introduced by Marchiori and Rossi in Marchiori and Rossi, 1999. There a genetic algorithm was used to generate offspring solutions to SAT using the standard genetic operators. However, offspring were then improved by means of local search methods. The same authors later proposed, ASAP, a variant of FlipGA Rossi et al., 2000. A good overview of other algorithms of this type is provided in Gottlieb et al., 2002.

The second direction is to use evolutionary techniques to automatically evolve local search heuristics. A successful example of this is the CLASS system developed by Fukunaga Fukunaga, 2002; Fukunaga, 2004. The process of evolving new heuristics in the CLASS system is based on five conditional branching cases (if-then-else rules) for combining heuristics. Effectively CLASS can be considered as a very special type of the genetic programming system where these rules are used instead of the standard GP operators (crossover and mutation). The results of the evolved heuristics were competitive with a number of human-designed heuristics. However, the evolved heuristics were relatively slow. This is because the conditional branching operations used evaluate two heuristics first and then select the output of one to decide which variable to flip. Also, restricting evolution to use only conditional branching did not give the CLASS system enough freedom to evolve heuristics radically different from the human-designed heuristics (effectively, the evolved heuristic are made up by a number of nested heuristics). Another example of system that evolves SAT heuristics is the STAGE system introduced by Boyan and Moore in Boyan and Moore, 2000. STAGE tries to improve the local search performance by learning (online) a function that predicts the output of the heuristic based on some characteristics seen during the search.
Hyper-heuristics, GP and SAT

Hyper-heuristics could simply be defined as “heuristics to choose other heuristics” (Burke et al., 2003a). A heuristic is considered as rule-of-thumb or “educated guess” that reduces the search required to find a solution. The difference between metaheuristics and hyper-heuristics is that the former operate directly on the targeted problem search space with the goal of finding optimal or near optimal solutions. The latter, instead, operate on the heuristics search space (which consists of the heuristics used to solve the target problem). The goal then is finding or generating high-quality heuristics for a target problem, for a certain class of instances of a problem, or even for a particular instance.

There are different classes of hyper-heuristics. In a first class of hyper-heuristic systems, the system is provided with a list of preexisting heuristics for solving a certain problem. Then the hyper-heuristic system tries to discover what is the best sequence of application for these heuristics for the purpose of finding a solution. Different techniques have been used to build hyper-heuristic systems of this class. Algorithms used to achieve this include, for example: tabu search (Burke et al., 2003b), case-based reasoning (Burke et al., 2006b), genetic algorithms (Cowling et al., 2002), ant-colony systems (Silva et al., 2005), and even algorithms inspired to honey-bees (Abbass, 2001).

Another form of hyper-heuristic is one where the system produces (meta-)heuristics by specialising them from a generic template. The specialisation can take the form of one or more evolved components, which can modify the behaviour of the meta-heuristic or heuristic. This approach has given, for example, very positive results in (Poli et al., 2007) where the problem of evolving offline bin-packing heuristics was considered. There genetic programming (GP) (Koza, 1992; Langdon and Poli, 2002) was used to evolve strategies to guide a fixed solver. This approach was also taken in (Bader-El-Din and Poli, 2008) where a general algorithm called Inc* was proposed that can be used to improve the performance of local search heuristics. The general idea of the algorithm is the following. Rather than attempting to directly solve a difficult problem, the algorithm attempts to solve a sequence of related (but easier) problems, progressively leading to the original problem. The search is not restarted when a new instance is presented to the solver. Thus, the solver is effectively and progressively biased towards areas of the search space where there is a higher chance of finding a solution to the original problem. This solver was applied to the SAT problem with good success. To further improve chances of success, a key element of Inc*, its strategy for adding and removing SAT clauses, was evolved using GP. (We will provide more information about this below, since the work presented in this paper relates closely to Inc*.)

A third approach used to build hyper-heuristic systems is to create (e.g., evolve) new heuristics by making use of the components of known heuristics.
The process starts simply by selecting a suitable set of heuristics that are known to be useful in solving a certain problem. However, instead of directly feeding these heuristics to the hyper-heuristic system (as in the first type of HHs discussed above), the heuristics are first decomposed into their basic components. Different heuristics may share different basic components in their structure. However, during the decomposition process, information on how these components were connected with one another is lost. To avoid this problem, this information is captured by a grammar. So, in order to provide the hyper-heuristic systems with enough information on how to use components to create valid heuristics, one must first construct an appropriate grammar. Hence, in the hyper-heuristics of this third type, both the grammar and the heuristics components are given to the hyper-heuristic systems. The system then uses a suitable evolutionary algorithm to evolve new heuristics. For example, in recent work Burke et al., 2006a GP was successfully used to evolve new heuristics of for one-dimensional online bin packing problems. While in Bader-El-Din and Poli, 2007 this approach was used in a system called GP-HH (for GP Hyper-Heuristic) to evolve heuristics for the SAT problem which are specialised to solve specific sets of instances of the problem. A comparison between GP-HH and other well-known evolutionary and local-search heuristics revealed that the heuristics produced by GP-HH are very competitive, being on par with some of the best-known SAT solvers.

Contributions of this Paper

The Inc* algorithm proposed in Bader-El-Din and Poli, 2008 and briefly discussed above has been very successful. There the choice of the simplified problems progressively leading to the original (hard) problem is dynamic so as to limit the chances of the algorithm getting stuck in local optima. Whenever the system finds a simplified instance too difficult, it backtracks and creates a new simplified instance. In the SAT context, the simplified problems are simply obtained by choosing subsets of the clauses in the original formula. The subset in current use is called the clauses active list. Depending on the result of the heuristic on this portion of the formula, the algorithm then increases or decreases the number of clauses in the active list. Naturally the choice of how many clauses to add or remove from the active list of Inc* after a success or failure is very important for the good performance of the algorithm. In Bader-El-Din and Poli, 2008 genetic programming was used to discover good dynamic strategies to make such decisions optimally at run time. These strategies were constrained to act within the specific Inc* algorithm (which we report in Algorithm 2), which was human designed.

Encouraged by the success of Inc* and the GP-HH, in this work, we want to take Inc* one step further. We want to evolve complete Inc*-type SAT
heuristics, instead of just evolving one or two control elements for the human-designed version of Inc*. To do this we make use of the grammar-based Hyper-Heuristic GP framework developed in Bader-El-Din and Poli, 2007; Bader-El-Den and Poli, 2007. As one can easily see inspecting the local heuristics presented in Section 5, all the heuristics share similar components, for example variable score, selection of a clause and conditional branching. The components of these heuristics plus additional primitives that are necessary to evolve Inc*-like behaviours are used to generate the grammar for GP-HH, as described in the next section.
By giving GP-HH the freedom to design completely new Inc*-type strategies, we hope to find novel and even more powerful algorithms for the solution of the SAT problem than Inc* or GP-HH alone.

1. **GP hyper-heuristic for evolving Inc* SAT heuristics**

The most important step in designing a GP Hyper-Heuristic framework as mentioned before is constructing a grammar capable of describing heuristics for the targeted domain. The grammar shows the GP system how the elementary components obtained from the decomposition of previously-known heuristics could be connected to generate valid evolved heuristics. The grammar presented in this section is a version of the one used in Bader-El-Din and Poli, 2007; Bader-El-Den and Poli, 2007, modified so as to be more efficient and to better suit the production of Inc*-type algorithms. The grammar contains elements form the heuristic described in the previous section.

Also the GP Hyper-Heuristic framework allows us to use components not used in handcrafted heuristics to see whether they will help the evolution process. This is important in our case because we are not just evolving SAT heuristics but evolving heuristic to perform well within the Inc* algorithm. For example, we added to the grammar new conditional branching conditions, based on the size of the current clauses active list as will be described in details later.

We classified the main components of these heuristics into two main groups. The first group of components, Group 1, returns a variable from an input list of variables (e.g., the selection of a random variable from the list or of the variable with highest gain score). The second group, Group 2, returns a list of variables from the CNF formula (e.g., the selection of a random unsatisfied clause which, effectively, returns a list of variables). The grammar is designed in such a way to produce functions with no side effects (i.e., we avoid using variables for passing data from a primitive to another). The aim was to reduce the constraints on the crossover and mutation operators, and to make the GP tree representing each individual simpler. The grammar we used and its components are shown in Figure 1.

The root of each individual (an expression in the language induced by the grammar) is the primitive Flip, which flips a variable v. The variable v is typically (but not always) selected from a list of variables, l, using appropriate primitives. There are three ways in which this can happen.

The first method is to select the variable randomly from l. This is done by the function Random l.

The second method is to choose the variable based on the score of the variables in the list. In other words it depends on how many more clauses will be satisfied after flipping a variable. A positive sign of the score means that more clauses will be satisfied. A negative score is instead obtained if flipping
the variable will cause fewer variables to be satisfied. The selection based on score is done by either \text{MaxScr} or \text{ScndMaxScr}. These functions select the variable with the highest and second highest score from \(l \), respectively. Both \text{MaxScr} and \text{ScndMaxScr} require a second argument, \(op \), in addition to a list \(l \). This argument specifies how to break tie if more multiple variables have the same highest score. If \(op \) is \text{TieAge}, the tie will be broken by favouring the variable which has been flipped least recently, while \text{TieRandom} breaks ties randomly.

The third method for selecting a variable through the primitive \text{ZeroBreak} which selects the variable that will not “unsatisfy” any of the currently satisfied clauses. If a such variable dose not exist in the given list, the primitive returns its second argument \(v \), which is selected by any of the previous methods.

The list of variables \(l \) can be selected from the CNF formula in three simple ways. The first two are directly taken from the handcrafted heuristics: \text{All} returns all the variables in the formula, which \text{UC} returns all the variables in one of randomly selected clause. The third method, \text{AllUC}, selects all the variables in all unsatisfied clauses. This primitive can be very useful (and indeed was often used by GP) in stages where the number of clauses in the \text{clauses active list} \text{Inc*} is relatively small.

The grammar also includes conditional branching components (\text{IFV} and \text{IFL}). Branching components are classified on the basis of their return type. The condition \(\text{prob} \) means that the branching is probabilistic and depends on the value of \(\text{prob} \). Also the branching can be done on other criteria like size of the \text{clauses active list}. This is not in any of the handcrafted heuristics, we added this to our grammar to make GP able to evolve heuristics that adapt with the different stages in the \text{Inc*} algorithm, while it progressively adds and removes clauses from the active list. \text{LastAtmp} is \text{true} if the \text{Inc*} last attempt to satisfy the \text{clauses active list} was successful and \text{false} otherwise.

2. Experimental setup

In these experiments we used a population of 500 individuals. While strategies are evolved using 50 fitness cases, the generality of best of run individuals is then evaluated on an independent test set including SAT instances.

In evolving \text{Inc*} Sat heuristics we used a training set including many SAT problems with different numbers of variables. The problems were taken from the widely used SATLIB benchmark library. All problems were randomly generated satisfiable instances of 3-SAT. In total we used 50 instances: 10 with 100 variables, 15 with 150 variables and 25 with 250 variables. The fitness \(f(s) \) of an evolved strategy \(s \) was measured by running the \text{Inc*} algorithm under the
control of s on all the 50 fitness cases. More precisely

$$f(s) = \sum_i \left(inc_s(i) \times \frac{v(i)}{10} \right) + \frac{1}{flips(s)}$$

where $v(i)$ is the number of variables in fitness case i, $inc_s(i)$ is a flag representing whether or not running the Inc* algorithm with strategy s on fitness case i led to success (i.e., $inc_s(i) = 1$ if fitness case i is satisfied and 0 otherwise), and $flips(s)$ is the number of flips used by strategy s averaged over all fitness cases. The factor $v(i)/10$ is used to emphasise the importance of fitness cases with a larger number of variables, while the term $1/flips(s)$ is added to give a slight advantage to strategies which use fewer flips (this is very small and typically plays a role only to break symmetries in the presence of individuals that solve the same fitness cases, but with different degrees of efficiency).
The GP system initialises the population by randomly drawing nodes from the function and terminal sets. This is done uniformly at random using the GROW method, except that the selection of the function (head) $Flip$ is forced for the root node and is not allowed elsewhere. After initialisation, the population is manipulated by the following operators:

- Roulette wheel selection (proportionate selection) is used. Reselection is permitted.
- The reproduction rate is 0.1. Individuals that have not been affected by any genetic operator are not evaluated again to reduce the computation cost.
- The crossover rate is 0.8. Offspring are created using a specialised form of crossover. A random crossover point is selected in the first parent, then the grammar is used to select the crossover point from the second parent. It is randomly selected from all valid crossover points. If no point is available, the process is repeated again from the beginning until crossover is successful.
- Mutation is applied with a rate of 0.1. This is done by selecting a random node from the parent (including the root of the tree), deleting the sub-tree rooted there, and then regenerating it randomly as in the initialisation phase.

We have used the following parameters values for the Inc* algorithm:

- We allow 100 flips to start with and 2,000 for instances with more than 250 variables.
- Upon failure, the number of flips is incremented by 20%.
- We allow a maximum total number of flips of 100,000, and 400,000 for instances with more than 250 variables.
- The maximum number of tries is 1000 (including successful and unsuccessful attempts).
- We evolved Inc* SAT heuristics for one simple Inc* strategies which adds 15% of the of the total number of clauses after each success and remove 10% after each fail.

3. Results

We start by showing a typical example of the Inc* heuristics evolved using the GP Hyper-Heuristics framework. Figure 3 shows one of the best performing heuristics evolved for the Inc* strategy (brackets were introduced to
As one can see, evolved heuristics are significantly more complicated than the standard heuristics we started from (e.g., GSat, WalkSat, Novelty). So, a manual analysis of how the component steps of an evolved heuristic contribute to its overall performance is difficult. Although the initial population in GP is randomly generated and includes no handcrafted heuristics, we have noticed most of the best evolved individuals contain some similar patterns to those in hand-crafted heuristics, this means that the grammar based have been able GP mix different heuristics patterns to evolve heuristics perform better within the Inc* algorithm.

The Inc* strategy and parameters settings used during the evolution process are the same as the one used in the testing phase. The Inc* strategy used is a simple one which 15% of the of the total number of clauses in the CNF to the Inc* active list, these are added after each successful attempt to satisfy the currently active clauses, if the heuristic failed in satisfying the clause active list are sorted and 10% of the clauses are removed.

Table 1 shows the results of a set of experiments comparing between the performance of WalkSat alone, WalkSat with the Inc* (IncWalk) and the performance of GPHH evolved heuristic with the inc* (IncHH). Instances with up to 250 variables were taken from SatLib uf20 to uf250. On these instances, heuristics where given a maximum of 100,000 total flips. Larger instances were taken from the benchmark set of the SAT 2007 completion and heuristics where given a maximum of 300,000 total flips. None of the test instances had been used in the GP training phase. The performance of the heuristics on an instance is the number of flips required to solve it averaged over 10 independent runs of a solver, to ensure the results are statistically meaningful. The AF column shows the average number of flips used by each heuristic in successful attempts only.

We categorize the results in this table to two groups. The first group includes instances is relatively small with no more than 100 variables. The second group includes larger instances with more than 100 variables. In the first group of problems all heuristics have a perfect success rate of 100%. The IncHH performance is close to performance of other heuristics regarding the number of flips used. However, IncHH was able to significantly outperform the other heuristics, and have been able to solve more instances from the second group as shown also in Figure 2.

4. Conclusions

We have used the GP-HH framework for evolving customized SAT heuristics which is used within the Inc* algorithm, GP have been able to evolve heuristics (IncHH) with high performance on different benchmark SAT problems.
Figure 2. Comparison between WalkSat, IncWalkSat and IncHH average success rate performance.

In future work, we will try to generalise the formwork to other problem domains, including scheduling, time tabling, TSP, etc. Also we will test the algorithm on different types of SAT benchmarks (e.g., structured and handcrafted SAT problems). We also want to study the effect of grammar design and desisture on HH formworks in more detail.

5. Acknowledgments

The authors acknowledge financial support from EPSRC (grants xx/xxxxxx/x and xx/xxxxxx/x).

Notes

1. Having a more generic function in the grammar that selects the variable with the n-th highest score turned to be computationally infeasible because this caused the evolved heuristics to be much slower. Also, it appears unnecessary since all handcrafted heuristics use only the first and second highest score.
Table 1. Comparison between average performance of WalkSat and WalkSat with Inc* and Inc* with the evolved heuristic (IncHH) SR = success rate, AT = average tries, AF = average number of flips

<table>
<thead>
<tr>
<th>name</th>
<th>no. clauses</th>
<th>WalkSat</th>
<th>Inc Walk</th>
<th>IncHH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SR</td>
<td>AF</td>
<td>SR</td>
</tr>
<tr>
<td>ut20</td>
<td>91</td>
<td>1</td>
<td>104.43</td>
<td>1</td>
</tr>
<tr>
<td>ut50</td>
<td>218</td>
<td>1</td>
<td>673.17</td>
<td>1</td>
</tr>
<tr>
<td>ut75</td>
<td>325</td>
<td>1</td>
<td>1896.74</td>
<td>1</td>
</tr>
<tr>
<td>ut100</td>
<td>430</td>
<td>1</td>
<td>3747.32</td>
<td>1</td>
</tr>
<tr>
<td>ut150</td>
<td>645</td>
<td>0.97</td>
<td>15021.3</td>
<td>1</td>
</tr>
<tr>
<td>ut200</td>
<td>860</td>
<td>0.9</td>
<td>26639.2</td>
<td>0.92</td>
</tr>
<tr>
<td>ut225</td>
<td>960</td>
<td>0.87</td>
<td>29868.5</td>
<td>0.87</td>
</tr>
<tr>
<td>ut250</td>
<td>1065</td>
<td>0.81</td>
<td>38972.4</td>
<td>0.83</td>
</tr>
<tr>
<td>com360</td>
<td>1533</td>
<td>0.68</td>
<td>277062</td>
<td>0.66</td>
</tr>
<tr>
<td>com400</td>
<td>1704</td>
<td>0.66</td>
<td>172820</td>
<td>0.70</td>
</tr>
<tr>
<td>com450</td>
<td>1912</td>
<td>0.64</td>
<td>169113</td>
<td>0.71</td>
</tr>
<tr>
<td>com500</td>
<td>2130</td>
<td>0.38</td>
<td>271822</td>
<td>0.42</td>
</tr>
<tr>
<td>com550</td>
<td>2343</td>
<td>0.35</td>
<td>288379</td>
<td>0.40</td>
</tr>
<tr>
<td>com600</td>
<td>2556</td>
<td>0.44</td>
<td>257479</td>
<td>0.47</td>
</tr>
<tr>
<td>com650</td>
<td>2769</td>
<td>0.34</td>
<td>274112</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Figure 3. Best evolved heuristics for Inc* SAT

Flip (ifv(30, If v (NotZeroAge, MacScr(ifl(20, AllUC, UC), TieRand),
 Ifv(40, ScndMacScr(
 Ifl(Small, AllUC, UC), TieAge),
 Ifv(ZeroBreak, UC,
 MaxScr(AllUC, TieAge))),
 Ifv(90, If v (NotMinAge, MacScr(UC, TieRand),
 If (70, ScndMacScr(UC, TieAge),
 Rand(UC)),
 Ifv(ZeroBreak, Ifl(Small, AllUC, UC),
 Ifv(40, ifl(20, AllUC, UC),
 Rand(UC)))))

References

