The effects of body armour and load carriage on respiratory function and physical performance during a simulated...

Article in Journal of Science and Medicine in Sport · November 2017
DOI: 10.1016/j.jsams.2017.09.173

5 authors, including:

Nicola Armstrong
Defence Science and Technology Laboratory...
5 PUBLICATIONS 1 CITATION
SEE PROFILE

Debbie Risius
Defence Science and Technology Laboratory...
13 PUBLICATIONS 46 CITATIONS
SEE PROFILE

Jim House
University of Portsmouth
55 PUBLICATIONS 358 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Breast health for schoolgirls View project
The effects of body armour and load carriage on respiratory function and physical performance during a simulated military task in male and female soldiers

Mrs Nicola C Armstrong 1, Dr Debbie Risius 1, Dr Sophie L Wardle 2, Dr Julie P Greeves 2, Dr James R House 3

1Human and Social Sciences Group, Dstl, Wiltshire, UK; 2Army Personnel Research Capability, Army Headquarters, Andover, UK; 3Extreme Environments Laboratory, Department of Sport and Exercise Science, University of Portsmouth, UK

Introduction

It is well established that load carriage has a detrimental effect on soldier performance. Torso load carriage alters breathing mechanics and causes respiratory muscle fatigue (RMF). RMF exacerbates limb fatigue which impairs performance during short term high intensity exercise. RMF will influence perceived exertion and may also have implications for injury, given the role of the respiratory muscles in the maintenance of posture.

In July 2016, the ban excluding women from ground close combat roles was lifted in the UK. Sex differences may make females more susceptible to the detrimental effects of load carriage. When matched for height, females have smaller lung volumes and airways, a decreased capacity for lung diffusion and a lower peak expiratory flow rates and a higher resistive work during tasks requiring high ventilation rates, females experience greater airway resistance and more turbulent airflow. The impact is lower peak expiratory flow rates and a higher resistive work of breathing. However, females demonstrate greater resistance to exercise-induced fatigue of the diaphragm and peripheral skeletal muscle which may counteract the aforementioned differences.

Aim

To investigate the effect of wearing body armour and load on respiratory function and physical performance during a pre-fatiguing loaded march followed by a best time test, in male and female soldiers.

Method

- Twelve male (stature: 1.81 (0.07) m; mass: 77.94 (8.4) kg) and ten female soldiers (stature: 1.68 (0.09) m; mass: 71.38 (9.11) kg).
- VO2max and anthropometric assessments undertaken.
- Participants completed an exercise test (Figure 1) in four different load configurations: Body Armour (BA) 23 kg; Assault Order (AO) 26 kg; Patrol Order (PO) 33 kg and Marching Order (MO) 43 kg (Figure 2). The best time test was completed wearing assault order loads.

Results

- Only 50 % of male and 10 % of female participants were able to complete all elements of the exercise test in all conditions. The main limiting factor for completing trials was self-reported discomfort.
- Load carriage caused a restrictive ventilatory impairment in both sexes indicated by a reduction in lung volumes at rest (women: up to 15 %; men: up to 17 %).
- Inspiratory and expiratory muscle fatigue was evident (7 % to 22 %) within the first 50 minutes of marching in all loads in both sexes. This increased with time but not load and fatigue was similar between sexes.
- Time to complete the best time test in AO was unaffected by the load carried during marching.
- It was not always possible to achieve the desired equipment fit in the female group due to poor integration of the body armour with the webbing.

Conclusions and Recommendations

- Physical performance decrements during prolonged loaded marching are evident in both sexes;
- These decrements occur with lighter loads and earlier during marching in women;
- These results may reflect differences in body size between sexes; however, further analyses are required to understand the independent mediators of these findings;
- These data highlight the need to investigate, and improve, the load carriage ability of women;
- Future work should consider the requirement for equipment designed specifically for the female form.

References

